[RAGatouille和ColBERT:让你的BERT搜索快如闪电]

# RAGatouille和ColBERT:让你的BERT搜索快如闪电

## 引言

在处理大量文本数据时,快速准确地检索信息变得至关重要。ColBERT(Columnar BERT)为大规模BERT搜索提供了高效的解决方案,而RAGatouille则让这一过程变得更加简单和易用。本文将探讨如何在LangChain链中使用RAGatouille作为检索器。

## 主要内容

### 什么是ColBERT?

ColBERT是一种高效的检索模型,可以在几十毫秒内在大量文本集合中进行BERT搜索。它运用了高效的数据结构和索引策略,以支持快速的信息检索。

### RAGatouille的安装和集成

RAGatouille简化了ColBERT的使用。首先,通过以下命令安装RAGatouille:

```bash
pip install -U ragatouille

RAGatouille的使用

以下代码展示了如何使用RAGatouille从Wikipedia检索页面并进行索引:

from ragatouille import RAGPretrainedModel
import requests

# 初始化RAG
RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0")

# 使用API代理服务提高访问稳定性
def get_wikipedia_page(title: str):
    URL = "https://en.wikipedia.org/w/api.php"
    params = {
        "action": "query",
        "format": "json",
        "titles": title,
        "prop": "extracts",
        "explaintext": True,
    }
    headers = {"User-Agent": "RAGatouille_tutorial/0.0.1 (ben@clavie.eu)"}
    response = requests.get(URL, params=params, headers=headers)
    data = response.json()
    page = next(iter(data["query"]["pages"].values()))
    return page["extract"] if "extract" in page else None

full_document = get_wikipedia_page("Hayao_Miyazaki")

RAG.index(
    collection=[full_document],
    index_name="Miyazaki-123",
    max_document_length=180,
    split_documents=True,
)

检索示例

在索引完文档后,我们可以使用以下代码进行查询:

results = RAG.search(query="What animation studio did Miyazaki found?", k=3)
print(results)

与LangChain集成

可以将RAGatouille转换为LangChain检索器,并将其整合到链中:

retriever = RAG.as_langchain_retriever(k=3)

from langchain.chains import create_retrieval_chain
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI

prompt = ChatPromptTemplate.from_template(
    """Answer the following question based only on the provided context:

    <context>
    {context}
    </context>

    Question: {input}"""
)

llm = ChatOpenAI()
document_chain = create_stuff_documents_chain(llm, prompt)
retrieval_chain = create_retrieval_chain(retriever, document_chain)

answer = retrieval_chain.invoke({"input": "What animation studio did Miyazaki found?"})
print(answer)

常见问题和解决方案

  1. CUDA不可用警告:在没有CUDA的环境下运行时,可能会出现警告。可以忽略这些警告或者配置安装CUDA。

  2. API访问不稳定:由于某些地区的网络限制,考虑使用API代理服务以提高访问稳定性。

总结和进一步学习资源

RAGatouille通过简化ColBERT的使用,为大规模文本检索提供了强大的工具。了解更多有关LangChain和ColBERT的信息能够帮助你更好地构建高效的检索解决方案。

进一步学习资源

参考资料

  • RAGatouille 官方文档:https://github.com/ragatouille/ragatouille
  • Wikipedia API 文档:https://www.mediawiki.org/wiki/API:Main_page

结束语:如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!


---END---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值