# RAGatouille和ColBERT:让你的BERT搜索快如闪电
## 引言
在处理大量文本数据时,快速准确地检索信息变得至关重要。ColBERT(Columnar BERT)为大规模BERT搜索提供了高效的解决方案,而RAGatouille则让这一过程变得更加简单和易用。本文将探讨如何在LangChain链中使用RAGatouille作为检索器。
## 主要内容
### 什么是ColBERT?
ColBERT是一种高效的检索模型,可以在几十毫秒内在大量文本集合中进行BERT搜索。它运用了高效的数据结构和索引策略,以支持快速的信息检索。
### RAGatouille的安装和集成
RAGatouille简化了ColBERT的使用。首先,通过以下命令安装RAGatouille:
```bash
pip install -U ragatouille
RAGatouille的使用
以下代码展示了如何使用RAGatouille从Wikipedia检索页面并进行索引:
from ragatouille import RAGPretrainedModel
import requests
# 初始化RAG
RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0")
# 使用API代理服务提高访问稳定性
def get_wikipedia_page(title: str):
URL = "https://en.wikipedia.org/w/api.php"
params = {
"action": "query",
"format": "json",
"titles": title,
"prop": "extracts",
"explaintext": True,
}
headers = {"User-Agent": "RAGatouille_tutorial/0.0.1 (ben@clavie.eu)"}
response = requests.get(URL, params=params, headers=headers)
data = response.json()
page = next(iter(data["query"]["pages"].values()))
return page["extract"] if "extract" in page else None
full_document = get_wikipedia_page("Hayao_Miyazaki")
RAG.index(
collection=[full_document],
index_name="Miyazaki-123",
max_document_length=180,
split_documents=True,
)
检索示例
在索引完文档后,我们可以使用以下代码进行查询:
results = RAG.search(query="What animation studio did Miyazaki found?", k=3)
print(results)
与LangChain集成
可以将RAGatouille转换为LangChain检索器,并将其整合到链中:
retriever = RAG.as_langchain_retriever(k=3)
from langchain.chains import create_retrieval_chain
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI
prompt = ChatPromptTemplate.from_template(
"""Answer the following question based only on the provided context:
<context>
{context}
</context>
Question: {input}"""
)
llm = ChatOpenAI()
document_chain = create_stuff_documents_chain(llm, prompt)
retrieval_chain = create_retrieval_chain(retriever, document_chain)
answer = retrieval_chain.invoke({"input": "What animation studio did Miyazaki found?"})
print(answer)
常见问题和解决方案
-
CUDA不可用警告:在没有CUDA的环境下运行时,可能会出现警告。可以忽略这些警告或者配置安装CUDA。
-
API访问不稳定:由于某些地区的网络限制,考虑使用API代理服务以提高访问稳定性。
总结和进一步学习资源
RAGatouille通过简化ColBERT的使用,为大规模文本检索提供了强大的工具。了解更多有关LangChain和ColBERT的信息能够帮助你更好地构建高效的检索解决方案。
进一步学习资源
参考资料
- RAGatouille 官方文档:https://github.com/ragatouille/ragatouille
- Wikipedia API 文档:https://www.mediawiki.org/wiki/API:Main_page
结束语:如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
---END---