提升搜索效果的利器:如何利用Ensemble Retriever合并多个检索器的结果

引言

在信息检索领域,不同的检索算法各具优势,如何充分利用这些优势来获得更好的检索效果,是开发者不断追求的目标。本文将介绍一种名为Ensemble Retriever的技术,来帮助我们结合多个检索器的结果,以实现更高效的搜索。其核心思想是通过Reciprocal Rank Fusion算法对来自多个基础检索器的结果进行重排序,从而提升整体性能。

主要内容

什么是Ensemble Retriever?

Ensemble Retriever是一种能够集成多个基础检索器(Base Retriever)的工具,它通过结合每个检索器的结果来提升整体检索效果。由于不同检索器基于不同的算法原理(如稀疏检索和密集检索),其在不同场景下表现出不同的优势。通过组合它们,我们可以获得更全面的搜索结果,这种方式也被称为"混合搜索"。

为什么要使用混合搜索?

在自然语言处理(NLP)应用中,稀疏检索器(如BM25)擅长通过关键字找到相关文档,而密集检索器(如基于向量嵌入的检索)擅长通过语义相似性找到相关文档。因此,结合这两者的优势可以大大提高搜索结果的相关性和准确性。

如何初始化和使用Ensemble Retriever

以下演示如何通过初始化一个BM25检索器和一个FAISS向量检索器来创建一个Ensemble Retriever。

from langchain.retrievers import EnsembleRetriever
from langchain_community.retrievers import BM25Retriever
from langchain_community.vectorstores import FAISS
from langchain_openai import OpenAIEmbeddings

# 文档列表
doc_list_1 = [
    "I like apples",
    "I like oranges",
    "Apples and oranges are fruits",
]

# 初始化BM25检索器
bm25_retriever = BM25Retriever.from_texts(
    doc_list_1, metadatas=[{"source": 1}] * len(doc_list_1)
)
bm25_retriever.k = 2

# 初始化FAISS向量检索器
doc_list_2 = [
    "You like apples",
    "You like oranges",
]
embedding = OpenAIEmbeddings()
faiss_vectorstore = FAISS.from_texts(
    doc_list_2, embedding, metadatas=[{"source": 2}] * len(doc_list_2)
)
faiss_retriever = faiss_vectorstore.as_retriever(search_kwargs={"k": 2})

# 初始化Ensemble Retriever
ensemble_retriever = EnsembleRetriever(
    retrievers=[bm25_retriever, faiss_retriever], weights=[0.5, 0.5]
)

# 使用Ensemble Retriever进行搜索
docs = ensemble_retriever.invoke("apples")
print(docs)

代码示例

在上述代码中,我们通过文本初始化了两个检索器:一个基于BM25的稀疏检索器和一个基于FAISS的向量检索器。接着,我们通过EnsembleRetriever将它们组合在一起,同时为每个检索器设定权重(均为0.5),以达到结果融合的效果。然后,我们对关键词"apples"进行搜索。

常见问题和解决方案

  • 如何调整检索器的参数?

    我们可以在运行时使用可配置字段(ConfigurableField)来调整各个检索器的参数。例如,调整FAISS检索器的"top-k"参数:

    from langchain_core.runnables import ConfigurableField
    
    faiss_retriever = faiss_vectorstore.as_retriever(
        search_kwargs={"k": 2}
    ).configurable_fields(
        search_kwargs=ConfigurableField(
            id="search_kwargs_faiss",
            name="Search Kwargs",
            description="The search kwargs to use",
        )
    )
    
    ensemble_retriever = EnsembleRetriever(
        retrievers=[bm25_retriever, faiss_retriever], weights=[0.5, 0.5]
    )
    
    config = {"configurable": {"search_kwargs_faiss": {"k": 1}}}
    docs = ensemble_retriever.invoke("apples", config=config)
    

    调整后,我们在运行时为FAISS检索器设置了不同的"k"值。

总结和进一步学习资源

通过Ensemble Retriever,我们可以有效地整合多个检索算法的优势,来实现更精准的搜索结果。为了进一步探索该领域,建议读者查阅以下资源:

  • 《信息检索导论》 by Christopher D. Manning
  • Langchain文档 Langchain Documentation
  • OpenAI和FAISS的相关向导和教程

参考资料

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值