探索Eden AI和LangChain的完美结合:如何轻松调用嵌入模型
人工智能的快速发展带来了前所未有的机遇,而Eden AI正在通过整合顶尖的AI提供商,彻底改变这一领域。Eden AI提供了一个全方位、一体化的平台,使用户能够通过单一API轻松访问AI的全面功能。这篇文章将详细介绍如何使用LangChain与Eden AI的嵌入模型进行交互,从而释放AI的无限潜力。
主要内容
获取API密钥
要访问Eden AI的API,首先需要获取API密钥。注册账号后,可以在Eden AI账户设置页面中找到。
完成注册后,将API密钥设置为环境变量:
export EDENAI_API_KEY="YOUR_API_KEY"
如果不想设置环境变量,可以在初始化EdenAI嵌入类时,通过edenai_api_key
参数直接传入密钥。
使用LangChain与Eden AI的嵌入模型交互
Eden AI API集成了多个提供商,要访问特定的模型,使用“provider”参数即可。
from langchain_community.embeddings.edenai import EdenAiEmbeddings
# 使用API代理服务提高访问稳定性
embeddings = EdenAiEmbeddings(edenai_api_key="YOUR_API_KEY", provider="openai")
嵌入文档和查询
docs = ["It's raining right now", "cats are cute"]
document_result = embeddings.embed_documents(docs)
query = "my umbrella is broken"
query_result = embeddings.embed_query(query)
计算余弦相似性
使用NumPy计算查询与文档之间的余弦相似性,以衡量它们的相似度。
import numpy as np
query_numpy = np.array(query_result)
for doc_res, doc in zip(document_result, docs):
document_numpy = np.array(doc_res)
similarity = np.dot(query_numpy, document_numpy) / (
np.linalg.norm(query_numpy) * np.linalg.norm(document_numpy)
)
print(f'Cosine similarity between "{doc}" and query: {similarity}')
输出
Cosine similarity between "It's raining right now" and query: 0.849261496107252
Cosine similarity between "cats are cute" and query: 0.7525900655705218
常见问题和解决方案
-
网络访问限制问题: 由于某些地区的网络限制,API访问可能会受到影响。建议使用API代理服务来提高访问的稳定性。
-
API密钥管理: 确保API密钥的安全性,不要将其硬编码在代码中,推荐使用环境变量或安全的密钥管理服务。
总结和进一步学习资源
通过使用LangChain与Eden AI的嵌入模型交互,我们可以实现快速、高效的文本相似性计算。随着Eden AI不断推陈出新,用户可以通过其平台轻松访问最新的AI技术。
进一步学习资源
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—