探索Eden AI和LangChain的完美结合:如何轻松调用嵌入模型

探索Eden AI和LangChain的完美结合:如何轻松调用嵌入模型

人工智能的快速发展带来了前所未有的机遇,而Eden AI正在通过整合顶尖的AI提供商,彻底改变这一领域。Eden AI提供了一个全方位、一体化的平台,使用户能够通过单一API轻松访问AI的全面功能。这篇文章将详细介绍如何使用LangChain与Eden AI的嵌入模型进行交互,从而释放AI的无限潜力。

主要内容

获取API密钥

要访问Eden AI的API,首先需要获取API密钥。注册账号后,可以在Eden AI账户设置页面中找到。

完成注册后,将API密钥设置为环境变量:

export EDENAI_API_KEY="YOUR_API_KEY"

如果不想设置环境变量,可以在初始化EdenAI嵌入类时,通过edenai_api_key参数直接传入密钥。

使用LangChain与Eden AI的嵌入模型交互

Eden AI API集成了多个提供商,要访问特定的模型,使用“provider”参数即可。

from langchain_community.embeddings.edenai import EdenAiEmbeddings

# 使用API代理服务提高访问稳定性
embeddings = EdenAiEmbeddings(edenai_api_key="YOUR_API_KEY", provider="openai")

嵌入文档和查询

docs = ["It's raining right now", "cats are cute"]
document_result = embeddings.embed_documents(docs)

query = "my umbrella is broken"
query_result = embeddings.embed_query(query)

计算余弦相似性

使用NumPy计算查询与文档之间的余弦相似性,以衡量它们的相似度。

import numpy as np

query_numpy = np.array(query_result)
for doc_res, doc in zip(document_result, docs):
    document_numpy = np.array(doc_res)
    similarity = np.dot(query_numpy, document_numpy) / (
        np.linalg.norm(query_numpy) * np.linalg.norm(document_numpy)
    )
    print(f'Cosine similarity between "{doc}" and query: {similarity}')
输出
Cosine similarity between "It's raining right now" and query: 0.849261496107252
Cosine similarity between "cats are cute" and query: 0.7525900655705218

常见问题和解决方案

  1. 网络访问限制问题: 由于某些地区的网络限制,API访问可能会受到影响。建议使用API代理服务来提高访问的稳定性。

  2. API密钥管理: 确保API密钥的安全性,不要将其硬编码在代码中,推荐使用环境变量或安全的密钥管理服务。

总结和进一步学习资源

通过使用LangChain与Eden AI的嵌入模型交互,我们可以实现快速、高效的文本相似性计算。随着Eden AI不断推陈出新,用户可以通过其平台轻松访问最新的AI技术。

进一步学习资源

参考资料

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值