引言
在现代数据科学和机器学习的世界中,数据存储和检索的高效性和灵活性至关重要。Activeloop Deep Lake作为一个多模态向量存储,可以存储嵌入及其元数据,包括文本、Json、图像、音频、视频等。本文将探讨Deep Lake的基本功能及其与LangChain的结合使用,展示如何利用它进行混合搜索和数据存储。
主要内容
什么是Deep Lake?
Deep Lake是一个无服务器的数据湖,支持版本控制、查询引擎和流式数据加载到深度学习框架中。它不仅可以存储嵌入,还能存储各种类型的数据,并支持本地存储、云存储或Activeloop存储。
设置环境
要开始使用Deep Lake,首先需要安装相关的Python包:
%pip install --upgrade --quiet langchain-openai langchain-community 'deeplake[enterprise]' tiktoken
与LangChain的集成
Deep Lake可以与LangChain库集成,下面的例子展示了如何在本地创建一个Deep Lake数据集,并进行相似性搜索。
配置API密钥
由于Deep Lake和OpenAI的API调用需要认证,以下是配置环境变量的方法: