动手学深度学习:代码笔记

本文介绍了使用PyTorch实现深度学习的基础知识,包括概率理论在骰子实验中的应用,线性回归的简洁实现以及softmax函数的实现。通过实例展示了如何使用PyTorch进行数据处理、模型定义、参数初始化、损失函数计算、优化算法选择以及模型训练。最终,文章通过比较训练结果与真实参数,验证了模型的准确性。
摘要由CSDN通过智能技术生成


前言
本文使用的是colab,采用pytorch框架,对应的视频教学是李沐的动手学深度学习,本文针对代码进行注释和整理笔记。

2.预备知识

2.6概率

!pip install git+https://github.com/d2l-ai/d2l-zh@release  # installing d2l
pip install matplotlib_inline
#导入对应的包
%matplotlib inline
import torch
from torch.distributions import multinomial
from d2l import torch as d2l

input:

fair_probs = torch.ones([6]) / 6#创建一个包含6个1的数组,同时都除以6
print(fair_probs)
multinomial.Multinomial(1, fair_probs).sample()#在fair_probs中再随机采样一个,因为传入的参数为1

output:

tensor([0.1667, 0.1667, 0.1667, 0.1667, 0.1667, 0.1667])
tensor([0., 1., 0., 0., 0., 0.])

在估计一个骰子的公平性时,我们希望从同一分布中生成多个样本。 如果用Python的for循环来完成这个任务,速度会慢得惊人。 因此我们使用深度学习框架的函数同时抽取多个样本,得到我们想要的任意形状的独立样本数组

multinomial.Multinomial(10, fair_probs).sample()
tensor([0., 4., 1., 4., 1., 0.])

让我们进行500组实验,每组抽取10个样本
input:

counts = multinomial.Multinomial(10, fair_probs).sample((500,))
print(counts)
cum_counts = counts.cumsum(dim=0)#累加(dim=0:行累加,dim=1:列累加)
estimates = cum_counts / cum_counts.sum(dim=1, keepdims=True)

d2l.set_figsize((6, 4.5))
for i in range(6):
    d2l.plt.plot(estimates[:, i].numpy(),
                 label=("P(die=" + str
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值