动手学深度学习
前言
本文使用的是colab,采用pytorch框架,对应的视频教学是李沐的动手学深度学习,本文针对代码进行注释和整理笔记。
2.预备知识
2.6概率
!pip install git+https://github.com/d2l-ai/d2l-zh@release # installing d2l
pip install matplotlib_inline
#导入对应的包
%matplotlib inline
import torch
from torch.distributions import multinomial
from d2l import torch as d2l
input:
fair_probs = torch.ones([6]) / 6#创建一个包含6个1的数组,同时都除以6
print(fair_probs)
multinomial.Multinomial(1, fair_probs).sample()#在fair_probs中再随机采样一个,因为传入的参数为1
output:
tensor([0.1667, 0.1667, 0.1667, 0.1667, 0.1667, 0.1667])
tensor([0., 1., 0., 0., 0., 0.])
在估计一个骰子的公平性时,我们希望从同一分布中生成多个样本。 如果用Python的for循环来完成这个任务,速度会慢得惊人。 因此我们使用深度学习框架的函数同时抽取多个样本,得到我们想要的任意形状的独立样本数组
multinomial.Multinomial(10, fair_probs).sample()
tensor([0., 4., 1., 4., 1., 0.])
让我们进行500组实验,每组抽取10个样本
input:
counts = multinomial.Multinomial(10, fair_probs).sample((500,))
print(counts)
cum_counts = counts.cumsum(dim=0)#累加(dim=0:行累加,dim=1:列累加)
estimates = cum_counts / cum_counts.sum(dim=1, keepdims=True)
d2l.set_figsize((6, 4.5))
for i in range(6):
d2l.plt.plot(estimates[:, i].numpy(),
label=("P(die=" + str