1 印象
简单的说,若数列无限地趋向于某一实数,则该确定的实数称为此数列的极限。
2 例子
从图像上我们可以看到,随着n增大数列在不断的靠近横着的那条坐标轴,可以猜测,数列的极限为0
究竟是不是呢?我们来听听这两个同学的讨论
2.1 讨论
B:嗯,看来0.6是可以的,那0.3可以吗
A:当然也是可以的,我们只需要将高度缩小为2倍0.3,这样绿色区域内的点与零的距离就都是小于0.3的了。可以看到,此时虽然第二个点和第三个点落到了区域外,但从第四个点开始,其他的点仍然在区域内,说明,从第四个点开始,所有点与零的距离都是小于0.3的。
B:嗯,看来0.3也是可以的,那0.2,0.1都可以吗
A:可以的,无论你给出多小的距离,我都可以告诉你从哪一项开始能满足要求,也就是说数列与零的距离可以是任意小,其极限为0。
2.2 分析
3 严格定义
该定义诘屈聱牙,确实是微积分学习中的第一只拦路虎,下面让我们来仔细分析。这个定义其实就说了两个意思:
3.1 猜测
既然是定义数列的极限,当然首先要给出数列,将它们表示在坐标系中,就是这些蓝点
不过这里最有可能的,还是下面这幅图中的直线
3.2 验证