因为方程ax^2+bx+c=0有以虚根
则其Δ<0
而一元二次方程的根的表达式为
x1=(-b+√Δ)/2a和x2=(-b-√Δ)/2a
由于Δ<0
即√Δ=(-Δi)^2=±√(-Δ)i (i是虚数单位)
故此时一元二次方程的根的表达式为
x1=(-b+√Δi)/2a和x2=(-b-√Δi)/2a
即两根互为共轭复数
举例如下:
韦达定理说明了一元二次方程中根和系数之间的关系。
因为方程ax^2+bx+c=0有以虚根
则其Δ<0
而一元二次方程的根的表达式为
x1=(-b+√Δ)/2a和x2=(-b-√Δ)/2a
由于Δ<0
即√Δ=(-Δi)^2=±√(-Δ)i (i是虚数单位)
故此时一元二次方程的根的表达式为
x1=(-b+√Δi)/2a和x2=(-b-√Δi)/2a
即两根互为共轭复数
举例如下:
韦达定理说明了一元二次方程中根和系数之间的关系。