∫(e^x)sin²xdx
=∫sin²xd(e^x)
=(e^x)sin²x-∫(e^x)d(sin²x)
=(e^x)sin²x-∫(e^x)(sin2x)dx
=(e^x)sin²x-∫(sin2x)d(e^x)
=(e^x)sin²x-(e^x)(sin2x)+∫(e^x)d(sin2x)
=(e^x)sin²x-(e^x)(sin2x)+∫(e^x)(2cos2x)dx
=(e^x)sin²x-(e^x)(sin2x)+∫(2cos2x)d(e^x)
=(e^x)sin²x-(e^x)(sin2x)+(2cos2x)(e^x)-∫(e^x)d(2cos2x)
=(e^x)sin²x-(e^x)(sin2x)+(2cos2x)(e^x)+∫(e^x)(4sin2x)dx
比较上面第三个等号和最后一个等号,求出∫(e^x)sin2xdx的值,代入就行了
利连循环积分计算,