二维数组中的查找
题目描述:
在一个二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序。请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数。
示例:自定义一个二维数组如下
8 | 9 | 12 |
---|---|---|
9 | 11 | 14 |
23 | 35 | 46 |
思路:
利用题中所给的条件:二维数组由左到右递增,由上到下递增的规律,那么,数组的左上角元素是最小的,数组的右下角元素是最大的。还有右上角的元素它的左边都比它小,下边元素都比它大。而左下角元素,该元素上边的都比自身小,右边的都比自身大。利用此性质,我们可以选取右上角元素或者左下角元素作为参照物。这里我选取的是右上角元素,拿着右上角元素array[row][col]与target进行比较,若target小于array[row][col]时,就不需要再考虑array[row][col]所在列的所有元素了,即col–(删除该列)。若target大于array[row][col]时,一样的道理就不需要再考虑array[row][col]所在行的所有元素了,即row++(删除改行)。
以上是该题思路。
代码如下:
@skl--java
package training;
public class Solution01 {
public boolean Find(int [][] array , int target)
{
int row = 0;
int col = array[0].length - 1;
while(row <= array.length - 1 && col >=0)
{
if (target == array[row][col])
return true;
else if(target > array[row][col])
row ++;
else
col --;
}
return false;
}
public static void main(String[] args)
{
int arrayInt[][] ={{8,9,12},{29,11,14},{23,35,46}};
Solution01 t = new Solution01();
if(t.Find(arrayInt, 23))
System.out.println("true");
else
System.out.println("false");
}
}
替换空格
题目描述:
实现一个函数,将一个字符串中的空格替换成“%20”。例如,当字符串为We Are Happy.则经过替换之后的字符串为We%20Are%20Happy。
思路:
首先,我们要知道字符串中有多少个空格,既从头到尾遍历字符串,统计空格数。由此计算替换之后的所需要的总长度。然后从后往前依次检查字符串,如果发现是空格则替换为%20。如果从前往后开始检查,发现有空格时需要移动后面的字符腾出位置,之后要不断向后检查一旦发现有空格还要继续后移字符(要多次移动,所以效率低下)。如果事先计算需要多少空间,从后往前检查,则每个字符只移动一次,这样效率更高。
示例:
原来:We Are Happy 现在:We%20Are%20Happy
代码如下:
@skl--java
package training;
//以下代码所标数值仅为本例参考
public class Solution02 {
public String replacespace(StringBuffer str)
{
int spacenum = 0;
for(int i = 0;i < str.length(); i++) //str.length()=12
{
if(str.charAt(i) == ' ')
spacenum ++; //spacenum = 2
}
int indexold = str.length() - 1; //替换前的下标
int newlength = str.length() + spacenum *2; //newlength=16
int indexnew = newlength -1;
str.setLength(newlength);
for(;indexold>=0 && indexold < newlength; --indexold)
{
if(str.charAt(indexold) == ' ')
{
str.setCharAt(indexnew-- , '0');
str.setCharAt(indexnew-- , '2');
str.setCharAt(indexnew-- , '%');
}
else
{
str.setCharAt(indexnew-- , str.charAt(indexold));
//修改指定索引处的字符,将indexnew处修改为
str.charAt(indexold)也可理解为赋值,再进行--
}
}
return str.toString();
}
public static void main(String [] args)
{
StringBuffer a = new StringBuffer("we are happy");
Solution02 t =new Solution02();
//t.replacespace(new StringBuffer("we are happy"));
//String s = new String();
//s = t.replacespace(a);
System.out.println(t.replacespace(a));
}
}
知识补充:
String 字符串常量
StringBuffer 字符串变量(线程安全)
StringBuilder 字符串变量(非线程安全)
简要的说, String 类型和 StringBuffer 类型的主要性能区别其实在于 String 是不可变的对象(常量), 因此在每次对 String 类型进行改变的时候其实都等同于生成了一个新的 String 对象,其指针指向了新的 String 对象,所以经常改变内容的字符串最好不要用 String ,因为每次生成对象都会对系统性能产生影响,特别当内存中无引用对象多了以后,JVM 的 GC 就会开始工作,那速度是一定会相当慢的。
而如果是使用 StringBuffer 类则结果就不一样了,每次结果都会对 StringBuffer对象本身进行操作。而不是生成新的对象,再改变对象引用。所以在一般情况下我们推荐使用 StringBuffer, 特别是字符串对象经常改变的情况下。
从尾到头打印链表
题目描述:
输入一个链表,从尾到头打印链表每个节点的值。
思路:
将链表中的值从头到尾依次压入进栈,利用栈后进先出的性质从栈顶依次出栈实现了反转,同时再将出栈的元素加入新的链表,最后输出新的链表即可。
@skl--java
package training;
import java.util.List;
import java.util.ArrayList; //ArrayList类是一种特殊的数组类型(动态数组)
import java.util.Stack;
public class Solution03 {
public static ArrayList<Integer> printListFromTailToHead(ListNode listNode)
{
if(listNode == null)
return null;
Stack<Integer> stk = new Stack<Integer>();
//定义一个栈类型 对象 stk
while(listNode != null)
{
stk.push(listNode.val); //当前节点不为空时,将其值压入进栈
listNode = listNode.next; //节点后移一个位置继续检查
}
ArrayList<Integer> arr = new ArrayList<Integer>();
while(! stk.isEmpty())
{
arr.add(stk.pop()); //ArrayList自带的添加元素方法:add(object value),
//判断栈顶的当前元素不为空时,出栈同时加入数组arr
}
return arr;
}
public class ListNode
{
int val;
ListNode next =null;
ListNode(int val)
{
this.val = val;
}
}
public static void main(String[] args)
{
int[] arr = {1, 23, 12, 8, 222};
int i = 0;
Solution03 s = new Solution03();
ListNode listNode = s.new ListNode(arr[i++]);
listNode.next = null;
ListNode p = listNode;
while(i < arr.length)
{ // 创建单链表
ListNode tmp = s.new ListNode(arr[i++]);
tmp.next = null;
p.next = tmp;
p = tmp;
}
List<Integer> l = printListFromTailToHead(listNode);
for(Integer t : l)
{
System.out.println(t);
}
}
重建二叉树
题目描述
输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6},则重建二叉树并返回。
代码如下:
@skl--java
package training;
import java.util.ArrayList;
import java.util.List;
public class Solution04 {
public static TreeNode reConstructBinaryTree(int [] pre, int [] in)
{
TreeNode root = reConstructBinaryTree(pre,0,pre.length-1,in,0,in.length-1);
return root;
}
private static TreeNode reConstructBinaryTree(int [] pre,int startPre,
int endPre, int []in,int startIn,int endIn)
{
if(startPre > endPre||startIn > endIn)
return null;
Solution04 t = new Solution04();
TreeNode root = t.new TreeNode(pre[startPre]);
for (int i = startIn;i <= endIn;i++)
if(in[i] == pre[startPre])
{
root.left = reConstructBinaryTree(pre,startPre+1,startPre+i-startIn,in,startIn,i-1);
root.right = reConstructBinaryTree(pre,i-startIn+startPre+1,endPre,in,i+1,endIn);
}
return root;
}
public class TreeNode
{
int val;
TreeNode left;
TreeNode right;
TreeNode(int x)
{
val = x;
}
}
public static List<Integer> postOrder(TreeNode root)
{
List<Integer> rootL = new ArrayList<Integer>();
List<Integer> leftL = new ArrayList<Integer>();
List<Integer> rightL = new ArrayList<Integer>();
List<Integer> l = new ArrayList<Integer>();
if(root != null)
{
leftL = postOrder(root.left);
rightL = postOrder(root.right);
rootL.add(root.val);
}
l.addAll(leftL);
l.addAll(rightL);
l.addAll(rootL);
return l;
}
public static void main(String[] args)
{
int[] pre = {1,2,4,7,3,5,6,8};
int[] in = {4,7,2,1,5,3,8,6};
List<Integer> l = postOrder(reConstructBinaryTree(pre, in));
for (Integer i : l)
{
System.out.print(i + " ");
}
}
}
用两个栈实现队列
题目描述:
用两个栈来实现一个队列,完成队列的Push和Pop操作。 队列中的元素为int类型。
思路:
整体思路是元素先依次进入栈1,再从栈1依次弹出到栈2,然后弹出栈2顶部的元素,整个过程就是一个队列的先进先出。但是在这个过程中需要判断两个栈的元素情况:“进队列时”,队列中是否还有元素,若有,说明栈2中的元素不为空,此时就先将栈2的元素出栈,保持在“进队列状态”。“出队列时”,将栈1的元素全部弹到栈2中,保持在“出队列状态”。所以要做的判断是,进时,栈2是否为空,不为空,则栈2元素出栈。出时,将栈1元素全部弹到栈2中,直到栈1为空。
@skl--java
package training;
import java.util.Stack;
public class Solution05
{
Stack<Integer> stack1 = new Stack<Integer>();
Stack<Integer> stack2 = new Stack<Integer>();
public void push(int val)
{
stack1.push(val);
}
public int pop()
{
while(!stack2.isEmpty())
{
return stack2.pop();
}
while(!stack1.isEmpty())
{
stack2.push(stack1.pop());
}
return stack2.pop();
}
public static void main(String []args)
{
Solution05 t = new Solution05();
t.push(1);
t.push(2);
t.push(3);
t.push(4);
System.out.println(t.pop());
System.out.println(t.pop());
System.out.println(t.pop());
System.out.println(t.pop());
}
}
旋转数组的最小数字
题目描述:
把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。 输入一个非递减排序的数组的一个旋转,输出旋转数组的最小元素。 例如数组{3,4,5,1,2}为{1,2,3,4,5}的一个旋转,该数组的最小值为1。 NOTE:给出的所有元素都大于0,若数组大小为0,请返回0。
@skl--java
package training;
public class Solution06 {
public int minNumberInRotateArray(int[] array) //minNumberInRoteArray1方法更加优化
{
if (array == null || array.length == 0)
{
return 0;
}
int low = 0;
int up = array.length - 1;
int mid = low;
while (array[low] >= array[up])
{
if (up - low == 1)
{
mid = up;
break;
}
if (array[low] == array[up] && array[mid] == array[low])
{
return MinInOrder(array);
}
mid = (low + up) / 2;
if (array[mid] >= array[low])
low = mid;
else if (array[mid] <= array[up])
up = mid;
}
return array[mid];
}
private int MinInOrder(int[] array)
{
int min = array[0];
for (int i = 1;i < array.length;i++)
{
if(array[i] < min)
min = array[i];
}
return min;
}
public int minNumberInRotateArray1(int [] array)
{
if(array == null || array.length == 0)
{
return 0;
}
for(int i = 1; i < array.length; i++)
{
if(array[i] < array[i - 1])
{ // 若出现第一个元素递减就为最小元素
return array[i];
}
}
return array[0];
}
public static void main (String[] args)
{
int [] a = {3,4,5,1,2};
Solution06 t = new Solution06();
int minnum = t.minNumberInRotateArray(a);
//int minnum = t.minNumberInRotateArray1(a);
System.out.println(minnum);
}
}
斐波那契数列
题目描述:
大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项。n<=39
@skl--java
package training;
// 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233
public class Solution07 {
public int Fibonacci(int n)
{
if(n <= 0)
return 0;
if(n == 1)
return 1;
return Fibonacci(n - 1) + Fibonacci(n - 2);
}
public int Fibonacci1(int n) //此方法是当时学c的时候书中提到的
{
int f1 = 1;
int f2 = 1;
int f3 = 0;
if(n == 0)
return 0;
if(n == 1 ||n == 2)
return 1;
for(int i = 1;i < n-1;i++)
{
f3 = f1 + f2;
f1 = f2;
f2 = f3;
}
return f3;
}
public static void main(String[] args)
{
Solution07 t = new Solution07();
int Fn = t.Fibonacci(8);
//int Fn = t.Fibonacci1(8);
System.out.println(Fn);
}
}
跳台阶
题目描述:
一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
思路:
类似斐波那契数序列,初始条件n=1:只能一种方法,n=2:两种
对于第n个台阶来说,只能从n-1或者n-2的台阶跳上来,所以
F(n) = F(n-1) + F(n-2)
@skl--java
package training;
public class Solution08 {
public static int jumpFloor(int target) //此方法比下面的方法更加优化
{
int one = 1;
int two = 2;
if(target == 1)
{
return one;
}
if(target == 2)
{
return two;
}
for(int i = 3;i <= target; i++)
{
two = one + two;
one = two - one;
}
return two;
}
public static int jumpFloor1(int target)
{
if(target < 0)
{
return 0;
}
if(target == 0)
{
return 1;
}
else
{
return jumpFloor1(target - 1) + jumpFloor1(target - 2);
}
}
public static void main(String[] args)
{
Solution08 t = new Solution08();
int a = t.jumpFloor(3);
System.out.println(a + "种跳法");
int b = jumpFloor1(4);
System.out.println(b + "种跳法");
}
}
变态跳台阶
题目描述:
一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
思路:
分析如下:
f(1) = 1
f(2) = f(2-1) + f(2-2) //f(2-2) 表示2阶一次跳2阶的次数。
f(3) = f(3-1) + f(3-2) + f(3-3)
…
f(n) = f(n-1) + f(n-2) + f(n-3) + … + f(n-(n-1)) + f(n-n)
以下具体来看:
(1)这里的f(n)代表的是n个台阶规定一次可以跳1,2,…n阶台阶,共有f(n)种跳法。
(2) n = 1时,只有1种跳法,f(1) = 1
(3) n = 2时,有两种跳台阶方式一次1阶或者2阶, f(2) = f(2-1) + f(2-2)
(4) n = 3时,会有三种跳台阶方式,1阶,2阶,3阶,那么若第一次跳出1阶后面剩下:f(3-1);第一次跳出2阶,剩下f(3-2);第一次3阶,那么剩下f(3-3),因此是f(3) = f(3-1)+f(3-2)+f(3-3)
(5) n = n时,会有n中跳的方式,1阶、2阶…n阶,得出结论:
f(n) = f(n-1)+f(n-2)+…+f(n-(n-1)) + f(n-n)
f(n-1) = f(n-2) + … +f(1) + f(0)
(6)所以有: f(n) = f(n-1)+f(n-1)
可以得出:
f(n) = 2*f(n-1)
7) 得出最终结论,在n阶台阶,一次有1、2、…n阶的跳的方式时,总得跳法为:
1 , (n=0 )
f(n) = 1 , (n=1 )
2*f(n-1),(n>=2)
@skl--java
public class Solution09 {
public static int jumpFloor(int target)
{
if(target < 0)
{
return 0;
}
else
if(target == 1 || target == 0)
{
return 1;
}
else
{
return jumpFloor(target - 1) * 2;
}
}
public static void main(String[] args)
{
Solution09 t = new Solution09();
int a = t.jumpFloor(5);
System.out.println(a + "种跳法");
}
}
矩形覆盖
题目描述:
我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?
思路:
2*n的大矩形,和n个2*1的小矩形
其中target*2为大矩阵的大小
有以下几种情形:
(1)target < 1 大矩形为 < 2*1,直接return 0;
(2)️target = 1大矩形为2*1,只有一种摆放方法,return1;
(3)️target = 2 大矩形为2*2,有两种摆放方法,return2;
(4)️target = n 分为两种情况考虑:
若第一次摆放一块 2*1 的小矩阵,则摆放方法总共为f(target - 1)
√ | ||||||||
---|---|---|---|---|---|---|---|---|
√ |
若第一次摆放一块1*2的小矩阵,则摆放方法总共为f(target-2)
因为,摆放了一块1*2的小矩阵(用√√表示),对应下方的1*2(用××表示)摆放方法就确定了,所以为f(targte-2)
√ | √ | |||||||
---|---|---|---|---|---|---|---|---|
× | × |
所以,target = n时,矩形覆盖方法共有:1*f(target - 1) + 1*f(target -2)
即:f(target - 1) + f(target -2)
@skl--java
package training;
public class Solution10 {
public int RectCover(int target)
{
if(target < 1)
{
return 0;
}
if(target == 1 || target == 2)
{
return target;
}
else
{
return RectCover(target - 1) + RectCover(target - 2);
}
}
public static void main(String[] args)
{
Solution10 t = new Solution10();
int a = t.RectCover(4);
System.out.println("覆盖种数:" + a);
}
}