重积分【复习向】

学习了多元函数的积分法,我们自然而然的进入到了积分法的学习,与一元函数积分法不同我们给多元函数积分起了一个新名字:重积分。“重”这个字本来就带有重新,多次的意思,这很好的契合了多元函数积分的核心思想:将多重积分转化为多次积分

一,二重积分

概念

对于概念的引入,一元函数的积分实际上是求的曲线与被积变量围成的图形或者说是函数在被积变量方向上的,在数轴上的积累,而多元函数与此相同,也是因变量在被积变量方向的,在面积上的积累,在二重积分中还引入一个新的变量来描述两个自变量:面积元素。单独与定积分进行类比的话,两者都是被积变量在定义域上的积累。

对于定义的过程与一元函数的积分相同:分割近似求和取极限,书上有不多说

另外,考虑到实际应用,同济教材上列举了两个例子一个是求曲顶柱体的体积,一个是求平面薄片的质量,两相对比,再结合一元函数的积分意义,不难看出:二重积分实际上是求体积,而扩展体积的定义为积累,二重积分还能解决抽象意义上的体积问题。

性质

1.常数的无关性

对变量群体进行的倍数变化不影响积分本身

2.区域的可分割性

对定义域可进行分割,类比于分段函数

3.常函数的积分

用几何性质秒了

4.函数恒定大小关系对积分大小关系的传递性
5.考虑性质3,4在函数自身上的应用

又被称为估值不等式,可以将一个未知函数的大小近似的描述,在一些不等式的证明中经常用到

计算法

这里接触到了这一章的核心思想,叫做把多重积分转化为多次积分,也是化繁为简,返璞归真的一种方法。

下面介绍两种转化的方法:

1.利用直角坐标系计算二重积分

两次单积分:x,y

核心原理:

在于点动成线,线动成面,面动成体

先线动成面:一次单积分,也是我们在学习一元函数积分时所做的

再面动成体:对面进行积分,实际上是同时对无数的线做积分,所以先后是相对的可变的,对称的。

自然而然的,我们要讨论一个先后的问题:

明确目的:先后对结果无影响,仅仅为了计算的简易程度考虑

判断依据:作为一种判断依据,仅仅作为一种大致的判断,取决于积分区域的形状和表达方式。具体来说,看积分区域对于哪一个变量是确定的明确的,就后对其进行积分,假设x的上下限是已知的,那么在对y求第一次积分时,就不需要考虑y的值具体是多少,反之如果先对x求了积分,那么第二次积分时就要专门求y的上下限具体是多少。

2.利用极坐标系计算二重积分

两次单积分:\rho\theta

核心原理:

就像在物理学中描述运动,直角坐标系更适合的是直线形的运动,而无法方便的解决曲线的问题,在物理学中引入了新的坐标系来解决问题,而转化坐标系,变换参考系,在数学本质都是进行了换元,是改变了自变量。

所以解决这样的问题,要考虑到换元的思想,更换坐标系的思想

在这里就进行了如下换元:

x=\rho \cos \theta ;y = \rho \sin \theta

也将直角坐标系更换为了极坐标系来描述定义域

自然而然的,我们继续讨论一个先后的问题

明确目的:先后对结果无影响,仅仅为了计算的简易程度考虑

在极坐标系中进行二重积分时,是否先对角度积分或先对半径积分,依然取决于积分区域的形状和表达方式。总结如下:

先对\theta积分再对\rho积分

此种积分顺序适用于对于圆形或者扇形积分区域进行积分,原理在于先求出一个又一个圆筒的“体积”,再将圆筒进行积分,与上述直角坐标系作类比,现在相当于对于变量\rho的上下限是已知的,而角度或者已知(大多数的情况下)或者可以表达为一个关于半径的方程,

先对\rho积分再对\theta积分

此种积分适用于辐射状分布的区域,原理在于求出一个小扇形区域的“体积”,再对其进行积分,与直角坐标系进行对比,,现在已知角度的范围,而r或者已知,或者可以表达为角度的函数。

举一个具体的例子,可以想象将一个sin函数的x坐标轴弯曲为一个圆形此时形成了一个花瓣形区域:

\int _{0}^{\pi }d\theta \int_{0}^{\sin 2\theta }f(r\cos \theta ,r\sin \theta )rdr

注:

1.区别于直角坐标系的积分此时要在函数之后补一个半径,因为极坐标系的积分实际上是对扇形的积分,而不是矩形的积分,这点来源在于面积元素的区别

2为什么会有不同积分转化,或者说换元方式?定义域的形状,所以1把握好选择尺度,关键在于把握好定义域的形状

二,三重积分

概念

对于概念的引入继续利用引入二重积分时所举的例子进行深化,方便理解四维的概念:二重积分时提到的薄片是忽略厚度的,现在想象一个人,你要求他的质量,而ta的质量是分布不均匀的,也就是说是随着xyz坐标变化的,这里质量就可以描述为一个有关xyz的函数,而此时质量就是第四维度。

继续利用扇面提到的积累这个词,三重积分所做的就是求这个第四维度在xyz三个维度三个方向上的积累,同样的,三重积分还引入一个新的变量来描述三个自变量的集体:体积元素。是该积分元素在定义域上的积累。

计算法

依然利用把多重积分转化为多次积分来解决

下面介绍几种转化方式:

1.利用直角坐标系计算

类比于二重积分,在数的角度上,二重积分在积分的过程中将一个变量描述为另一个变量的函数,

而三重积分也可以利用这一种思路,将有关三个变量的函数描述为只和一个变量有关的函数,将另外两个自变量与函数值的直接关系理解为,先和第三变量交互,再和函数值交互的间接关系,这样就实现了将三重积分转化为对第三变量的一次积分和一次二重积分进一步转化为三次积分

最后得到了:

\int_{a}^{b}dx\int_{y1(x)}^{y2(x)}dy \int_{z1(x,y)}^{z2(x,y)}f(x,y,z)dz

此时体积元素是一个类立方体

2.利用柱面坐标系计算

此时相当于三重积分中的二重积分适合用极坐标的形式表示,且定义域的形状便是柱面的

也相当于对xy进行换元

此时体积元素是圆盘的微分

3.利用球面坐标系计算

此时相当于对三重积分三个变量全部进行了换元,

此时的体积元素是一个球体的微分

三,重积分的应用

二重积分的应用

曲面的面积
质心

求面上的质心,公式:

\bar{x} =\frac{\sum_{i=1}^{n}mixi}{\sum_{i=1}^{n}mi }

\bar{y} =\frac{\sum_{i=1}^{n}miyi}{\sum_{i=1}^{n}mi }

得:

\bar{x} =\frac{\iint x\mu (x,y)d\sigma }{\iint \mu (x,y)d\sigma }

\bar{y} =\frac{\iint y\mu (x,y)d\sigma }{\iint \mu (x,y)d\sigma }

转动惯量

三重积分的应用

质心

类比二重积分,可自行推导

转动惯量
引力
  • 16
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值