线性代数的几何表示

几何——指向真理之乡,创造哲学之魂。

Geometry will draw the soul toward truth and create the spirit of philosophy.                                       —— 柏拉图 (Plato) | 古希腊哲学家 | 424/423 ~ 348/347 BC

引言:

在学习之前,要明确他在知识结构中处于一个什么样的位置:对于矩阵我更倾向于把他理解为一种描述数据的一种更为简洁直观的形式,凸出数据本身与数据之间的相对关系,它的名称中也没用任何晦涩的字眼,仅仅描述了它的形状,在数的角度,在代数的领域去理解它,它就可以与线性方程组结合起来,而在形的角度,在几何和抽象意义上的几何(将维度的概念拓宽为一个描述整体状态的一个方向)领域上,它就可以与向量组相结合。这是一种极具美感的数形对应与统一,我们把这种意料之外却又在情理之中的碰撞称为对偶性,希望这个性质可以在其他领域启发你的学习,构建你的知识结构

一,n维向量及其运算

1.n维向量

对欧几里得空间下的二维向量和三维向量做推广,这里的n维的“维”不应该把它想当然的理解为高维生物的“维”,而是“看问题的维度的维”,维度的概念不再局限在空间上,而是可以拓展到任何一个描述整体状态的方向上

分类:

(按分量的范围):

实向量:分量全部在实数集上

虚向量:分量全部在虚数集上

(按分量的排列方式):

列向量:成列排列的一组分量

行向量:成行排列的一组分量

注:数学的学习本就包含一个不断简化的过程,为了书写上的方便,我们常常把列向量写作行向量的转置

2.向量的运算

类比二维向量三维向量:

线性运算:

加法:对相对应的元素做加法,减法等同于加法

数乘(标量与向量的乘法):对各个元素做数乘,数除等同于数乘

注:以上两种运算是线性运算,整个线性代数在向量部分的展开主要围绕这两种运算进行

内积(点积):用矩阵来描述向量时,要考虑向量相乘的顺序问题:即行向量与列向量相乘时得到的结果是一个行向量,而一个m行列向量与一个n列行向量相乘得到的是一个m*n阶的矩阵

性质与二维三维运算基本相同

3.线性运算与非线性运算

对于线性运算和非线性运算的理解影响着整个线性代数的学习,为了你能充分的理解接下来的内容,在这里对这两个概念做解释:

线性运算 

满足线性运算性质的运算称为线性运算:

叠加性:满足f(x+y)=f(x)+f(y)

齐次性:满足f(ux)=uf(x)

u为标量,x,y为向量

与向量相结合:对应向量的加法和数乘,直观来的体现在坐标系中,经过线性运算后没有改变它本身的直线性质,只是进行了伸长和收缩。

非线性运算

非线性运算则不满足上述一个或多个性质。具体来说,如果运算 g 不满足以下性质中的任意一个或两个,它就是非线性运算

二,向量组的线性相关性

由若干个同维数的行向量或列向量组成的集合称为向量组,组合起来你会发现他们在形式上是一个数阵,我们得到了矩阵!

1.向量组的线性表示

如果你上过高中的话,你应该对共线定理,共面定理不陌生

共线定理共面定理做了一件什么事呢?

他们实际上是描述了在一个什么样的条件下一组二维向量(三维向量)不能描述所在维度(二维平面,三维立体空间)上的所有向量 ,即共线(共面)时

而在描述的过程中,实际上我们已经利用了线性组合线性表示的概念

一个二维向量可以由所在平面上任意两个不共线的向量经过线性运算后的组合来表示,

一个三维向量可以由所在平面上任意两个不共线的向量经过线性运算后的组合来表示,

这种组合叫做线性组合

这种表示叫做线性表示

在向量组的维度上:

如果一个向量组的所有向量都可以用另一个向量组的向量线性表示,则说明该向量组可以用另一个向量组线性表示,如果两个向量组的可以相互线性表示,则两个向量组是等价的

2.向量线性相关性定义及性质

线性相关与线性无关:

一个向量可以由一个向量经过线性运算表示,那么说明这两个向量是共线的。

一个向量可以由两个向量的线性组合表示,那么说明这两个向量是共面的。

而对于向量组而言,存在上述现象一次或多次,那么说这个向量组是线性相关的。否则为线性无关

充要条件

1.向量的角度:至少一个向量可由其余向量线性表示

2.线性方程组的角度:所对应的齐次线性方程组Ax=0有非平凡解

三,向量组的秩与极大无关组

相关基本定义介绍完之后,我们正式进入对偶性体现的部分,真正产生碰撞的地方,

极大无关组:

定义:

极大无关组是从一个向量组中提取的一个线性无关的向量子集,并且该子集的大小是可能的最大的。即满足:

极大:无法再添加一个向量进去

无关:各向量线性无关

性质:

可能具有多解性(不满秩时)

向量组的秩:

定义:

一个向量组中线性无关 向量的个数

性质:

两个等价向量组的秩相同

向量组对方的行秩等于列秩

四,基与坐标

1.基

一组线性无关的向量,可以作为一组基,

类比于二维平面中不共线的两个向量可以作为一组基底,分别作为两个坐标轴方向,进而表示平面内所有向量,三维立体空间中是不共面的三个向量。

2.正交基与正交矩阵

物理中,力的分解时有正交分解

其实是按照一组正交基,即互相垂直的基底进行分解,是基的一种特殊情况

范数:

定义:

向量与它的转置矩阵做点积再开根号

理解:在欧几里得空间中向量的范数与向量的模是等价的,但要注意范数不完全等于向量的模,范数是一个更为广泛的数学概念,可以应用于各种不同类型的空间和不同的度量方式,而模通常在欧几里得空间中特别指向量的欧几里得长度。写法上也要区分开来

性质:

非负性:对于任意向量 𝑣v,有 ∥𝑣∥≥0∥v∥≥0。

齐次性:对于任意标量 𝛼α 和向量 𝑣v,有 ∥𝛼𝑣∥=∣𝛼∣∥𝑣∥∥αv∥=∣α∣∥v∥。

三角不等式:对于任意向量 𝑢u 和 𝑣v,有 ∥𝑢+𝑣∥≤∥𝑢∥+∥𝑣∥∥u+v∥≤∥u∥+∥v∥。

零向量的范数为零:∥𝑣∥=0∥v∥=0 当且仅当 𝑣v 是零向量。

正交基:

一个向量组,所有向量都是两两垂直的,称这组基底为正交基

标准正交基:

基底都为单位向量的正交基

正交矩阵:

 一个矩阵,它的行向量或列向量是一个正交基,且它与它转置矩阵的积为单位阵

正交矩阵的性质:

保持长度:正交矩阵保持向量的长度不变。

保持角度:正交矩阵保持向量之间的角度不变。

逆矩阵:正交矩阵的逆矩阵是其转置矩阵。

3.向量的坐标

用标准正交基线性表示时的系数数组

例如二维向量的坐标三维向量的坐标,实质上是用终点来表示向量

五,向量空间(线性空间)与维数

1.向量空间(线性空间)的定义

向量空间是一个集合,由一组基可以线性表示的所有向量所构成的集合称为一个向量空间

要想表示所有的向量就要利用线性运算线性组合来表示更多的向量

包含两个元素集合:

向量集合 V:向量空间的元素称为向量。

标量域 F:通常是实数 R 或复数 C,也可以是其他域。

注:对于线性空间与向量空间这两个概念实际上是等价的:都是用于描述满足特定运算和公理的一类集合。在研究数学、物理学、工程学等领域中的问题时,它们提供了统一的框架和工具。在不同的领域或上下文中可能偏好使用不同的术语。例如,在工程学和物理学中,通常使用向量空间,而在纯数学中,线性空间的用法更常见。

2.向量空间的性质

向量空间对于向量的线性运算封闭:

对于向量空间中的向量进行任意线性组合,结果仍在向量空间中:

加法中:

1.若a,b属于向量空间V,则a+b属于V

具体性质:交换律,结合律,存在零向量,存在加法逆元

数乘中:

2.若a属于V,则\lambdaa属于V,\lambda为实数

具体性质:           ,结合律,存在单位元,                       ,分配律(区分标量对向量和向量对标量)

3.向量空间的分类:

由标量域

实数:实线性空间

复数:复线性空间

由向量域

1.欧几里得空间:

  • 向量是 n 维实数向量,标量是实数。向量加法和数乘运算定义为分量加法和分量数乘。

2.矩阵空间

  • 向量是次数不超过 n 的多项式,标量是实数或复数。向量加法是多项式的加法,数乘运算是多项式的数乘。

3.多项式空间

  • 向量是 m×n 的矩阵,标量是实数或复数。向量加法是矩阵的逐元素加法,数乘运算是矩阵的逐元素数乘。

4.函数空间

  • 向量是定义在区间 [a,b] 上的连续函数,标量是实数。向量加法是函数的逐点相加,数乘运算是函数的逐点数乘。

4.向量空间的维数

向量空间的基向量的个数为向量空间的维数

例如,在欧几里得空间中,由两个基向量张成的向量空间是二维的,由三个基向量张成的向量空间是三维的,

在矩阵空间中,矩阵本身可以作为一种“向量”来看待

5.向量空间与向量组的区别与联系

向量空间是一个无限大的集合

向量组是向量空间中一些向量的集合

当向量组中的向量刚好是向量空间的一组基时,此时向量组是满秩的,且秩=张成向量空间维数=原向量空间维数,此时选取该向量组作为基生成的向量空间为原向量空间

当向量组中的向量真包含了向量空间的一组基时,此时满秩不确定,满足秩=张成向量空间维数>=原向量空间维数

当向量组中的向量数小于向量空间的基向量的个数时,此时满秩不确定,满足秩=张成向量空间维数<原向量空间维数

所以向量组是用来描述向量空间,张成向量空间,或研究具体一个向量组的线性代数性质的。

有什么见解欢迎大家发表在评论区,以上是我对这一部分的理解,希望在交流中我们可以共同学习。

  • 37
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值