多元函数微分法及其应用【复习向】

第一次写博客,有什么错的地方希望大家多多指正,不胜感激。

微分法

首先虚无缥缈的数学太抽象,与具体的场景应用才是数学的生命力所在,在正式进入这一章之前,对于所学知识在整个知识网络占有一个什么样的地位有一个大概的认知是很有必要的。这一章我们将从研究单一自变量对单一因变量的影响,走向多个自变量对因变量的影响,注意,从代数角度来说,这里的自变量前线来说是xyz等等,具体点来说这些也可以是我们经过数学建模后的变量,从几何角度来说,一个自变量是x和y的函数所形成的图像是一个平面,当实际意义带入函数中时,平面可能会具有一些特别的含义,这是我对他的一些猜想与理解。下面我会顺着由对应关系梳理本章知识点

函数基本概念

定义域与值域:

一维数轴区间拓展到二维点集,开区间与闭区间拓展到了开区域与闭区域,同时区间与区间之间的连接不再那么简单,于是有了开集与开区域,闭集与闭区域之间的划分。

极限:

一重极限拓展到二重极限,而由于二重极限趋近于一个点的方式是无穷的,一个平面是由无数个直线构成的,讨论二重极限的存在不像一重极限那样简单,存在需要所有方式趋近都为同一值,不存在则只需要找到一种趋近方式。

至于求极限的方式,我们要学会用已知去解释解决未知,主要的思路是将二元向一元转化,另外也可以采用两个重要极限,和极限的等价关系进行计算

连续:

一元函数连续拓展到二元函数连续,类比于一元函数中极限存在且极限等于函数值则说明函数在这一点是连续的,二元函数中极限存在且极限值等于函数值这说明函数在在这一点连续。

介值定理的拓展,对于一个定义域内的连续函数,任意一个函数值必然介于最大值和最小值之间

函数性质的研究

明晰了基本概念接下来就要研究函数的变化,由于多元函数在极限与连续性上体现的复杂性,注定了我们不能采用一个式子完备的表示函数在各个方向上的变化,这里我们采用用特殊来表示一般的思想,也可以联想到线性代数中的用特征向量来描述线性变换,选取特殊的两个方向xy进行表示。

偏导数:

 导数拓展成偏导数:研究二元函数的变化率问题

对x的偏导:把y当做常数,对x求一阶导数,表示函数在x方向上的变化率

对y求偏导:把x当做常数,对y求一阶导数,表示函数在y方向上的变化率

高阶偏导数:对偏导数再进行偏导,会出现非混合和混合偏导数两种情况,对于二阶混合偏导数而言,两个二阶混合偏导数都连续时,两个二阶混合偏导数必然相等,具体应用可拓展到拉普拉斯方程。

全微分:

微分拓展到全微分:研究二元函数的变化量问题

对x的偏增量与偏微分:f\left ( \Delta x+x,y \right )-f\left ( x,y \right )\approx \frac{\partial f}{\partial x}\Delta x左边称为偏增量,右端称为偏微分

对y的偏增量与偏微分:同理

全增量与全微分:公式略,同时考虑x与y的增量,全增量实际上相当于将两个偏增量相加,全微分也就相当于两个偏微分相加(即叠加原理)。再与向量进行一下类比,即所有的向量都可以用两个基向量表示。

极限,连续,偏导数存在,偏导数连续,全微分存在(可微)之间的联系

1.极限存在+极限值等于函数值 = 函数在该点连续

2.该点连续 推出 偏导数存在,但偏导数存在推不出该点连续

3.偏导数存在+偏导数连续 推出 可微分,但可微分推不出连续偏导数,只可推出偏导数存在

4.一点可微分 推出 该点连续,但连续推不出可微分,由于连续的含义在于微小的变化量对应微小的增量,而可微分对此的限制更严格,即函数的变化是光滑的,改点要存在一个切平面

建议读者自行画一个图帮助理解,自己画出的印象最深刻

多元函数的求导法则

常规类型的多元函数

一维求导到多维求导的拓展:要把多元函数放在与一元函数等价的位置上,从复合函数求导的角度理解它

一元函数与多元函数的复合:

多元函数与多元函数的复合:

其他情形:

注:求导过程都是相当于将一个n元函数当做n个一元函数,然后分别对给定的自变量求导,实际上就是复合函数求导,都是外导乘内导

隐函数

一个方程的情形

方程组的情形

微分法的应用

几何应用

一元向量值函数与其导数:

我们知道向量是有序的数据组,很自然的,多元函数的偏导数可以构成一个向量。称其为导向量。

空间曲线的切线与法平面:

对参数方程,或由两个平面方程确定,偏导数所组成的向量是该点的切向量的一个(方向沿着t变换的方向)。可进一步求出法向量。

曲面的切平面与法线:

对以方程形式给出的平面方程,偏导数组成的向量是该点的一个法向量。可进一步求出切平面

代数几何结合

方向导数与梯度:

方向导数:

反映二元函数沿着某一方向变化率

方向导数的求法:

1.定义法(用于偏导数难求而函数值好求,特别是带方,y方的)

2.公式法(用于没办法用第一种解决的绝大多数情况)

方向导数与偏导数的比较:

方向导数在几何意义上是求以某一个点为起点,一个射线方向上该点的导数(所对应截面图像的切线斜率),而偏导数是在该点的邻域内,也就是实在直线的范围内来讨论的。所以由方向导数存在而偏导数不一定存在。反映到式子上,方向导数的t趋近于0正,而偏导数的\Delta x是趋近于0的。当且仅当沿着x+与x-两个方向的方向导数存在且互为相反数时,原函数对x的偏导数存在

梯度:

依然是反映主要变化方向,由方向导数而来,即将方向导数公式改写成向量点乘的形式,将由偏导数组成的向量称作梯度

梯度的意义:通过向量转化,能够极容易的求出方向导数的最值,直接将角量消去。梯度即阶梯的度量,上楼的方向,也就是方向导数取得最大值的方向,也是等值线在该点的法线方向

代数应用

多元函数的极值及其求法:

极值最值:

定义略

存在性:判别式:AC-B*B

条件极值与拉格朗日乘数法:

条件极值与非条件极值:

即有没有约束条件的存在,特征是条件越多,极值的绝对值越小

  • 7
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值