踩坑之cvxopt的数据格式

本文介绍了在Python中使用cvxopt库解决有约束优化问题时可能遇到的数据维度不匹配、数据格式错误以及数据未转换为矩阵形式等错误,并提供了解决这些问题的示例代码。通过确保数据为'd'类型,正确转换list为matrix,以及正确构造矩阵,可以避免这些常见错误,从而成功运行优化求解。同时强调了表达式的正确性对优化过程的重要性。
摘要由CSDN通过智能技术生成

python导入cvxopt库进行有约束优化问题的求解,但是老报错,经过多次踩坑发现,错误原因可能是:数据维度不匹配;数据格式不是'd'型;数据未转换为矩阵形式。

先放上一个能成功运行的:

from cvxopt import matrix, solvers

P = [[20.79, 19.52], [19.52, 18.36]]
P = matrix(P)
q = matrix([-1.0, -1.0])
G = [-1.0, -1.0]
G = matrix(G, (1,2))
h = 0.0
h = matrix(h)
A = [1.0, 1.0]
A = matrix(A, (1, 2))
b = 0.0
b = matrix(b)

solvers.options['show_progress'] = False
sol = solvers.qp(P, q, G, h, A, b)
print(sol['x'])
print(sol['primal objective'])

注意:

Ⅰ数据必须都带小数点,需要保证数据为’d'类型

Ⅱ某些list转化为matrix时需指定大小,如A=matrix(A, (1, 2))指定A为1*2矩阵

Ⅲmatrix必须是cvxopt.matrix,使用numpy.matrix不行

然后还遇到了这个问题:

发现是因为表达式写错了,无法进行最优化求解。

修改表达式为正确形式后成功。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值