题意:给出,其中,判断是否为高斯素数。
分析:其实就是上面的判断高斯素数的方法,但是注意一点,这里,而正常情况是,其实差不多一样,
只是把为素数这个条件改为:为素数即可,那么如果把题目描述改为呢?同样的道理只需把
判断条件改成为素数即可,由于很大,所以写个Miller_Rabin吧。。。
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <iostream>
const int Times=10;
using namespace std;
typedef long long LL;
LL multi(LL a,LL b,LL m)
{
LL ans=0;
while(b)
{
if(b&1)
{
ans=(ans+a)%m;
b--;
}
b>>=1;
a=(a+a)%m;
}
return ans;
}
LL quick_mod(LL a,LL b,LL m)
{
LL ans=1;
a%=m;
while(b)
{
if(b&1)
{
ans=multi(ans,a,m);
b--;
}
b>>=1;
a=multi(a,a,m);
}
return ans;
}
bool Miller_Rabin(LL n)
{
if(n==2) return true;
if(n<2||!(n&1)) return false;
LL a,m=n-1,x,y;
int k=0;
while((m&1)==0)
{
k++;
m>>=1;
}
for(int i=0; i<Times; i++)
{
a=rand()%(n-1)+1;
x=quick_mod(a,m,n);
for(int j=0; j<k; j++)
{
y=multi(x,x,n);
if(y==1&&x!=1&&x!=n-1) return false;
x=y;
}
if(y!=1) return false;
}
return true;
}
int main()
{
LL a,b;
while(~scanf("%I64d%I64d",&a,&b))
{
if(a==0)
{
if(b%4==3&&Miller_Rabin(b)) puts("Yes");
else puts("No");
}
else
{
LL t=a*a+2*b*b;
if(Miller_Rabin(t)) puts("Yes");
else puts("No");
}
}
return 0;
}