自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(13)
  • 资源 (2)
  • 收藏
  • 关注

原创 【无监督短语抽取】SIFRank论文详读

SIFRank: 一个基于预训练模型的无监督关键词抽取的模型。它由两部分组成:句向量模型SIF和自回归预训练模型ELMO,在短文本中它表现优异。document segmentation和contextual word embeddings alignment在保证accuracy的前提下加速了SIFRank。

2022-09-20 15:26:12 1233 1

原创 【文本匹配】Sentence-BERT Sentence Embeddings using Siamese BERT

Sentence-BERT: Sentence Embeddings using Siamese BERT-Network EMNLP2019年的论文,用bert+孪生网络加速语义表征。BERT和RoBERTa在语义相似度上达到了state-of-the-art,但在10000个句子中查找最相似对需要话费约65个小时来进行5千万次推断。BERT的结构决定了它并不适用于语义结构......

2022-06-21 09:21:39 695

原创 【文本匹配】之 RE2论文详解

文本匹配方法RE2阿里2019年ACL论文

2022-04-21 22:28:55 1884 1

原创 【文本匹配】之 经典ESIM论文详读

详读ESIM论文

2022-04-20 14:19:54 870

原创 【文本分类】多意图分类评估指标

nlp文本分类多意图分类中常见的评估指标

2022-04-08 16:34:05 2283

原创 【笔记】A Tutorial of Transformers_复旦大学邱锡鹏报告

从attention开始介绍起transformer,和transformer的一系列变体,简洁易懂,深入浅出

2022-01-24 11:28:59 1083

原创 【文本生成】评价指标:事实一致性Evaluating the Factual Consistency of Abstractive Text Summarization

论文:2019年《Evaluating the Factual Consistency of Abstractive Text Summarization》https://arxiv.org/pdf/1910.12840.pdfmotivation高达30%的摘要是和原文事实不符的,到目前为止也没有非常好的办法去解决摘要与原文的事实一致性。introduction与事实一致的问题与两个问题最为接近:一个是natural language inference(NLI),一个是fact checkin

2021-12-02 19:34:22 2102

原创 【文本生成】评价指标:BARTScore

这篇论文出自2021 NeurIPS,通讯作者是卡耐基梅隆大学博士后刘鹏飞(prompt综述作者),论文全名:《BARTSCORE:Evaluating Generated Text as Text Generation》BARTSCORE采用无监督学习 对不同方面 (e.g. informativeness, fluency, or factuality) 进行评估。在本文中,我们将生成文本的评估公式化为文本生成问题,通过从其他文本输入和输出生成或生成其他文本输入和输出的概率的概率直接评估文本。这与

2021-10-11 14:48:38 4094 6

原创 【文本生成】评价指标:BERTScore

BERTScore使用contextual embedding来描述句子,计算两个句子之间的相似度。在本文中,我们将重点放在句子级别的生成评估上,并提出了:BERTScore,这是一种基于预训练的BERT上下文嵌入 (bert)的评估指标。 BERTScore将两个句子之间的相似度计算为它们的标记之间的余弦相似度的加权汇总。基于n-gram matching metric 的常见缺陷:semantically-correct phrases are penalized because they

2021-10-11 14:37:11 15094 4

原创 【PIL处理图片】小技巧之圆角边框处理

【PIL处理图片】系列文章目录小技巧之图片透明渐变处理小技巧之画虚线、加粗字体、长文本自动分行(符号处理)小技巧之圆角边框处理def circle_corner(img, radii=30, two_corner=True, save_path=None): # 白色区域透明可见,黑色区域不可见 circle = Image.new('L', (radii * 2, radii * 2), 0) draw = ImageDraw.Draw(circle) draw.e

2021-08-13 15:40:56 749 2

原创 【PIL处理图片】小技巧之画虚线、加粗字体、长文本自动分行(符号处理)

PIL处理图片上一篇介绍了图片渐变蒙版处理,还有一些其他的小技巧,一起在这里介绍一下。可以直接看目录标题,几个方法相互独立。文章目录PIL处理图片画虚线前言一、pandas是什么?二、使用步骤1.引入库2.读入数据总结画虚线提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档前言提示:这里可以添加本文要记录的大概内容:例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。提示:以下是本篇文章正文内容,下面案例

2021-08-09 15:45:52 5643

原创 【PIL处理图片】小技巧之图片透明渐变处理

这里写自定义目录标题欢迎使用Markdown编辑器新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导入导出导入欢迎使用Markdown编辑器你好! 这是你第一次使用 Markdown编辑器 所展示的欢迎页。如果你想学习如何使用Mar

2021-08-09 11:30:34 1095

原创 win64装JPype

jpype安装过程:我的系统是win10(64位)+python2.7(64位)+jdk1.8(64位)最后能运行win10(64位)+python2.7(32位)+jdk1.5(32位)

2017-04-13 22:44:30 2901 1

Dialog-based Language Learning.pdf

Facebook 2016年对于对话系统的综述:A long-term goal of machine learning research is to build an intelligent dialog agent. Most research in natural language understanding has focused on learning from fixed training sets of labeled data, with supervision either at the word level (tagging, parsing tasks) or sentence level (question answering, machine translation). This kind of supervision is not realistic of how humans learn, where language is both learned by, and used for, communication. In this work, we study dialog-based language learning, where supervision is given naturally and implicitly in the response of the dialog partner during the conversation. We study this setup in two domains: the bAbI dataset of [30] and large-scale question answering from [4]. We evaluate a set of baseline learning strategies on these tasks, and show that a novel model incorporating predictive lookahead is a promising approach for learning from a teacher’s response. In particular, a surprising result is that it can learn to answer questions correctly without any reward-based supervision at al

2020-05-07

Openintro Statistics 3rd edition

coursera课程statistics with R专项第一门课程.杜克大学.Introduction to Probability and Data教材

2016-09-03

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除