【文本分类】多意图分类评估指标

【文本分类】多意图分类评估指标

主要分为两类:label based measures和example based measures。

label based measures

就是针对每一个分类,都进行一次计算,最后再用一种average方法把多个分类统一起来。

假设有这么一组数据,

expected   predicted
A, C        A, B
C           C
A, B, C     B, C

用sklearn MultiLabelBinarizer 进行转化

expected    predicted
1 0 1       1 1 0
0 0 1       0 0 1
1 1 1       0 1 1

classA来说,

TP = 1(真实和预测都是1)

FP = 0(真实0,预测1)

TN = 1(真实0,预测0)

FN = 1(真实1,预测0)

TN   FP           1   
### 常见的点云分类评价指标 对于点云分类的效果评估种评价指标可以用来衡量模型的表现。这些指标不仅限于整体准确性,还包括更细致化的度量标准。 #### 准确率 (Accuracy) 准确率是最直观的理解方式,即预测正确的样本数占总样本的比例[^1]。然而,在类别不平衡的情况下,这个指标可能无法全面反映模型的真实表现。 #### 精确率(Precision),召回率(Recall)以及F1分数(F1 Score) 精确率定义为真正类别的正向实例被正确识别出来的比例;而召回率则是指所有实际属于某一特定类别的实例中有少被成功检测出来。两者之间往往存在权衡关系,因此引入了综合考虑这两者的F1得分,它提供了更加平衡的观点[^2]。 #### 平均交并比(Mean Intersection over Union, mIoU) mIoU是一个广泛应用于语义分割任务中的重要评测手段,同样适用于点云分类场景。该方法通过比较两个集合(真实标签与预测结果)之间的重叠部分来量化差异大小。具体来说,针对每一个类别计算其IOU值之后取平均值得到最终的结果[^3]。 #### Per-class Accuracy 除了上述全局性的统计外,还可以单独考察各个不同种类下的分类精度情况,这有助于发现哪些具体的物体或者表面特征更容易造成误判等问题[^4]。 ```python def calculate_per_class_accuracy(true_labels, predicted_labels, num_classes): per_class_correct = [0] * num_classes per_class_total = [0] * num_classes for true_label, pred_label in zip(true_labels, predicted_labels): if true_label == pred_label: per_class_correct[true_label] += 1 per_class_total[true_label] += 1 accuracies = [] for i in range(num_classes): if per_class_total[i] != 0: acc = float(per_class_correct[i]) / per_class_total[i] accuracies.append(acc) return accuracies ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值