【文本生成】评价指标:事实一致性Evaluating the Factual Consistency of Abstractive Text Summarization

论文:2019年《Evaluating the Factual Consistency of Abstractive Text Summarization》
https://arxiv.org/pdf/1910.12840.pdf

motivation

经研究高达30%的摘要是和原文事实不符的,到目前为止也没有非常好的办法去解决摘要与原文的事实一致性。

introduction

与事实一致的问题与两个问题最为接近:一个是natural language inference(NLI),一个是fact checking。

当前的NLI数据集一般都是短的单句匹配,事实一致性却是要与全文去匹配。

fact checking是事实与知识匹配,而事实一致性是原文提供的信息和原文作匹配,并不保证信息是否一致。

methods

training data

本文用了一种弱监督的方法构造训练集,通过构造的sentence-document pair,可以判断是否与事实一致。

训练集由采样原文句子获得。

  • paraphrasing

    采用回译方法,用Google Cloud Translation API,默认语义不变。

  • entity and number swapping

    用NER识别后,随机替换。比如人名就替换成识别到的其他人名。用的是SpaCy NER t

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值