球贝塞尔函数

本文介绍了贝塞尔微分方程及柱谐函数,包括第一类和第二类贝塞尔函数,以及球贝塞尔方程的解决方案,球汉克尔函数的定义及其导数性质。重点讲解了这些数学工具在解决物理问题中的应用,适合理解拉普拉斯方程和波动理论的读者。
摘要由CSDN通过智能技术生成

首先,贝塞尔微分方程(Bessel's differential equation)也被称为柱谐函数圆柱函数圆柱谐波,通常在使用分离变量法求解柱坐标中的拉普拉斯方程时得到:

\begin{equation} x \frac{\mathrm{d}}{\mathrm{d}{x}} \left(x \frac{\mathrm{d}{y}}{\mathrm{d}{x}} \right) + (x^2 - l ^2)y = 0 \end{equation}{\color{Magenta} }

其中L 叫做阶数(order),一般来说可以是任意实数,但半整数和整数较为常见.两个线性无关的解分别是第一类贝塞尔函数(Bessel function of the first kind)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值