Python+OpenCV实现sobel边缘检测

sobel边缘检测即实现对图像边缘的提取,输入为一幅图像,输出为图像轮廓。
sobel算法步骤:
(1)将输入图像转为灰度图;
(2)对灰度图进行二值化处理(此过程采用otsu二值化算法,具体otsu算法参看上一篇博客);
(3)定义sobel竖直和水平卷积算子;
(4)遍历图像像素点,除边缘像素点外,每个像素点的领域像素点(共计九个像素点)分别与sobel算子(竖直和水平卷积算子)值相乘累加;
(5)将竖直和水平sobel算子乘积值绝对值之后相加,赋于新的与原图像相等大小的矩阵中。

import cv2 as cv
import math
import numpy as np

def rgb2gray(img):
    h=img.shape[0]
    w=img.shape[1]
    img1=np.zeros((h,w),np.uint8)
    for i in range(h):
        for j in range(w):
            img1[i,j]=0.144*img[i,j,0]+0.587*img[i,j,1]+0.299*img[i,j,1]
    return img1

def otsu(img):
    h=img.shape[0]
    w=img.shape[1]
    m=h*w   # 图像像素点总和
    otsuimg=np.zeros((h,w),np.uint8)
    threshold_max=threshold=0   # 定义阈值
    histogram=np.zeros(256,np.int32)   # 初始化各灰度级个数统计参数
    probability=np.zeros(256,np.float32)   # 初始化各灰度级占图像中的分布的统计参数
    for i in range (h):
        for j in range (w):
            s=img[i,j]
            histogram[s]+=1   # 统计灰度级中每个像素在整幅图像中的个数
    for k in range (256):
        probability[k]=histogram[k]/m   # 统计每个灰度级占图像中的分布
    for i in range (255):
        w0 = w1 = 0  # 定义前景像素点和背景像素点灰度级占图像中的分布
        fgs = bgs = 0  # 定义前景像素点灰度级总和and背景像素点灰度级总和
        for j in range (256):
            if j<=i:   # 当前i为分割阈值
                w0+=probability[j]   # 前景像素点占整幅图像的比例累加
                fgs+=j*probability[j]
            else:
                w1+=probability[j]   # 背景像素点占整幅图像的比例累加
                bgs+=j*probability[j]
        u0=fgs/w0   # 前景像素点的平均灰度
        u1=bgs/w1   # 背景像素点的平均灰度
        g=w0*w1*(u0-u1)**2   # 类间方差
        if g>=threshold_max:
            threshold_max=g
            threshold=i
    print(threshold)
    for i in range (h):
        for j in range (w):
            if img[i,j]>threshold:
                otsuimg[i,j]=255
            else:
                otsuimg[i,j]=0
    return otsuimg

def sobel(img):
    h=img.shape[0]
    w=img.shape[1]
    sobelimg=np.zeros((h,w),np.uint8)
    sobelx=[[-1,0,1],
            [-2,0,2],
            [-1,0,1]]
    sobely=[[1,2,1],
            [0,0,0],
            [-1,-2,-1]]
    sobelx=np.array(sobelx)
    sobely=np.array(sobely)
    gx=0   # 垂直方向上的梯度模长
    gy=0   # 水平方向上的梯度模长
    for i in range(1,h-1):
        for j in range(1,w-1):
            edgex=0
            edgey=0
            for k in range(-1,2):
                for l in range(-1,2):
                    edgex+=img[k+i,l+j]*sobelx[1+k,1+l]
                    edgey+=img[k+i,l+j]*sobely[1+k,1+l]
            gx=abs(edgex)
            gy=abs(edgey)
            gramag=gx+gy
            sobelimg[i,j]=gramag
    return sobelimg

image=cv.imread("D:/sobel.png")
grayimage=rgb2gray(image)
otsuimage=otsu(grayimage)
sobelimage=sobel(otsuimage)
cv.imshow("image",image)
cv.imshow("sobelimage",sobelimage)
cv.waitKey(0)
cv.destroyAllWindows()

实验结果:
在这里插入图片描述
通过实验结果可以看出效果并不好,说明关于源码编写仍有不少瑕疵,希望各位可以分享更为高效的代码,谢谢。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值