SHAP分析交互作用的功能,如果你用的模型是xgboost

SHAP分析交互作用的功能,如果你用的模型是xgboost

如果在SHAP分析中使用的是xgoost模型,就可以使用SHAP分析内置的交互作用分析,为分析变量间的相互提供了另外一个观察的视角。关于SHAP交互作用分析,一个参考资料,还是很值得看看。

  1. SHAP分析内置的交互作用可视化(汇总图)。是使用R语言shapviz包实现。前提是用的模型是xgboost,还要在获得shap对象的时候将参数“interactions=TRUE”。这个图对角线上是主效应,对角线两侧是交互作用,大概就是里面的点分得越开,交互作用越大。
    在这里插入图片描述
  2. 如果觉得不够直观,还可以获取交互作用的SHAP值来绘制热图。R语言shapviz包中使用sv_interaction(shap obj)函数来绘制上面的图,如果将其中的参数“kind=‘no’”,那么就会获得一个交互作用的数据表,而不是图。这个数据表直接导入pheatmap()函数来绘制热图,应该是比较容易看懂。
    在这里插入图片描述
  3. 这时候如果已经选出了感兴趣的变量,推荐你选择一个连续变量。这时候可以聚焦观察这两个变量之间的交互作用。这个功能并不需要xgboost模型。
    在这里插入图片描述
  4. 如果恰巧与这个变量有交互作用的变量是一个分类变量,你可以用分层分析来观察两者之间的交互作用,包括使用限制性立方样条回归来拟合分层的SHAP值。
    在这里插入图片描述
    也有一些专门分析交互作用的专门的R包,比如interactions,或许使用SHAP分析发现交互作用之后,就可以引入这些包来进行一些交互作用分析,而以上的功能为我们提供了更多的选择。实现代码保存在和鲸社区相关项目,一键复现。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

医学AppMatrix

文中代码请大家随意

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值