单细胞测序数据分析流程的最佳实践

单细胞测试数据分析流程是整个论文数据分析过程中相对固定的部分,有一定的标准流程,以下整理了发表论文的相关内容供简要了解,详细内容可以参照2019年发表的综述:Luecken MD, Theis FJ. Current best practices in single-cell RNA-seq analysis: a tutorial. Mol Syst Biol. 2019 Jun 19;15(6):e8746. doi: 10.15252/msb.20188746. PMID: 31217225; PMCID: PMC6582955.

在这里插入图片描述

1.质量控制

  • 目的 :确保单细胞基因表达数据中所有细胞条形码数据对应活细胞,并去除低质量或无信息的细胞和基因,提升数据质量,为后续分析提供可靠数据基础。通过检查细胞相关指标和转录本情况,过滤异常值,减少噪声干扰。
  • 注意事项: 综合考虑多个指标,如每个条形码的计数深度、检测到的基因数量以及线粒体基因计数的比例。这些指标单独分析可能导致误判,例如高线粒体基因计数比例的细胞不一定是低质量细胞,也可能参与呼吸过程。所以要联合考虑这些指标进行阈值设定。 数据集细胞类型的异质性会使质量控制指标分布呈现多个峰值,此时需谨慎设定阈值,避免误判。通常仅将最低计数深度和基因数峰值视为非活细胞,且高计数过滤时,过滤掉的细胞比例不应超过预期的双细胞率。 环境基因表达会干扰下游分析,在基于液滴的scRNA-seq数据集中可进行校正,也可在下游分析中忽略强环境基因。同时,质量控制效果需依据下游分析性能评估,可能需要多次调整阈值。
  • 最佳实践:通过寻找基因数量、计数深度和线粒体读取比例的异常峰值进行质量控制,联合考虑这些协变量,而非单独分析。 尽量设置宽松的质量控制阈值,若下游聚类结果难以解释,再重新审视质量控制步骤。当样本间质量控制协变量分布不同时,分别为每个样本确定质量控制阈值,以考虑样本质量差异。

2.标准化

  • 目的:由于单细胞RNA测序过程中存在多种可导致计数深度差异的因素,标准化旨在消除这些差异,使基因表达数据在细胞间具有可比性,从而准确反映基因表达的真实差异。
  • 注意事项:不同的标准化方法适用于不同类型的scRNA-seq数据。例如,基于全长协议的数据可能受益于考虑基因长度的标准化方法,而非全长数据集则有其他更合适的方法。目前对于是否对基因进行标准化(缩放基因计数使其均值为0、方差为1)尚无共识,需根据具体分析目的谨慎选择。标准化后的数据通常进行log(x + 1)转换,虽然这一转换有诸多益处,如使距离代表log倍数变化、减轻均值 - 方差关系、减少数据偏度等,但也可能引入虚假的差异表达效应,尤其是当标准化大小因子分布在测试组间差异较大时。
  • 最佳实践:对于非全长数据集,推荐使用scran进行标准化。也可通过scone工具评估不同的标准化方法,尤其适用于基于平板的数据集。对于全长scRNA-seq协议,可使用批量方法校正基因长度。在本教程中,倾向于不对基因表达进行缩放,以保留更多生物学信息。 对标准化后的数据进行log(x + 1)转换,以便用于假设数据呈正态分布的下游分析方法,但需注意其可能带来的虚假效应。

3.数据校正和整合

  • 目的:数据校正旨在进一步去除标准化后数据中存在的技术和生物学协变量的影响,如批次效应、细胞周期效应等,使数据更接近真实的生物学信号。数据整合则是将来自多个实验的数据合并,以增加数据的信息量和分析的全面性。
  • 注意事项:在回归去除生物学效应时,需要谨慎考虑。例如,去除细胞周期效应虽有助于推断发育轨迹,但也可能掩盖其他重要的生物学信号,且细胞大小等因素也可能影响对细胞周期效应的判断。 校正技术效应时,除了使用回归方法,对于基于平板的scRNA-seq数据集,由于其细胞间计数深度变化较大,可能需要采用更严格的归一化程序,如下采样或非线性归一化方法。 批次效应校正和数据整合应采用不同方法,数据整合工具可能会对简单批次效应过度校正。此外,表达恢复(去噪或插补)虽能改善基因 - 基因相关性的估计,但可能会引入虚假相关信号,在探索性数据分析中使用时需谨慎。
  • 最佳实践:仅在进行轨迹推断且其他感兴趣的生物学过程不会被掩盖时,才回归去除生物学协变量。 联合回归去除技术和生物学协变量,而非依次进行。当批次间细胞类型和状态组成一致时,推荐使用ComBat进行批次校正。用户应谨慎对待仅在表达恢复后发现的信号,探索性分析时最好不进行这一步骤。

4. 特征选择

  • 目的:单细胞RNA测序数据维度高,包含大量基因,但并非所有基因都对研究有意义。特征选择旨在筛选出能反映数据变异性、对后续分析有价值的基因,降低数据维度,减轻下游分析工具的计算负担,同时减少噪声干扰,提高分析效率和准确性。
  • 注意事项:选择的高变基因数量需根据数据集的复杂程度合理确定。一般在1000 - 5000个之间,但初步研究表明,在一定范围内改变高变基因数量,对下游分析结果影响较小。不过,若数量过少,可能无法充分捕捉数据中的变异信息;数量过多,则可能引入过多噪声。 特征选择方法依赖基因表达的均值和方差,因此在基因表达值被归一化到零均值和单位方差,或使用模型拟合残差作为归一化表达值时,不能使用此类方法。所以在进行特征选择前,需谨慎考虑数据的预处理方式。
  • 最佳实践:根据数据集复杂度,选择1000 - 5000个高变基因用于下游分析。可采用Scanpy和Seurat中基于基因平均表达进行分箱,选取方差与均值比值最高的基因作为高变基因的方法。为避免选择受批次效应等技术因素影响的基因,最好在技术数据校正后进行高变基因选择。

5. 降维

  • 目的:单细胞表达矩阵维度高,直接分析和可视化困难。降维算法将其嵌入低维空间,在尽可能保留数据内在结构的同时,减少维度,便于数据可视化和后续分析。降维的主要目标包括可视化,将数据集以二维或三维坐标展示,直观呈现数据特征;以及数据总结,找到数据的固有维度,提取关键信息,为下游分析提供支持。
  • 注意事项:不同的降维方法适用于不同的分析目的。线性降维方法如主成分分析(PCA),虽然在捕捉数据结构方面可能不如非线性方法,但它是许多聚类和轨迹推断工具的基础,且其线性特性使降维空间中的距离具有一致的解释性。非线性降维方法如t - 分布随机邻域嵌入(t - SNE)和均匀流形近似与投影(UMAP),在可视化方面表现出色,但解释性相对较弱。 选择降维方法时,需明确是用于可视化还是数据总结。例如,t - SNE在可视化时可能夸大细胞群体间差异,忽略潜在联系,且其困惑度参数的选择对聚类结果影响较大;而UMAP在处理大规模数据时具有速度和可扩展性优势。
  • 最佳实践:对于一般目的的数据总结,推荐使用PCA。它通过最大化每个维度捕获的残差方差生成降维结果,通常可根据“肘部”启发式方法或基于置换检验的Jackstraw方法确定主成分数量。在进行轨迹推断总结时,扩散映射是PCA的合适替代方法,其扩散成分能突出数据中的转换,适用于研究连续过程,如细胞分化。 对于探索性可视化,推荐使用UMAP,其速度快且可扩展性强,能较好地展示数据的整体分布和细胞群体关系。此外,分区图抽象(PAGA)结合UMAP可用于可视化特别复杂的数据集,通过将细胞聚类表示为节点,轨迹表示为边,更清晰地呈现数据的拓扑结构。

6. 可视化

  • 目的:将降维后的数据以直观的图形展示,帮助研究人员快速理解数据的分布特征、细胞群体间的关系以及基因表达模式,从而发现潜在的生物学规律,为后续分析和生物学解释提供依据。
  • 注意事项:t - SNE可视化虽能突出局部相似性,但可能扭曲全局结构,且困惑度参数的选择对结果影响显著,不同参数值可能导致图中显示的细胞簇数量差异较大,需谨慎调整。 不同可视化方法对数据的呈现方式不同,在选择时需根据数据特点和研究目的进行权衡。例如,当研究细胞群体的全局关系和潜在连接时,t - SNE可能不太适用;而当数据量较大,需要快速了解数据整体结构时,UMAP则更具优势。
  • 最佳实践:在没有特定生物学问题的情况下,UMAP是探索性数据可视化的最佳选择,它能够在保留数据拓扑结构的同时,快速处理大规模数据,清晰展示细胞群体的分布情况。 PAGA与UMAP结合可有效可视化复杂数据集。PAGA通过构建基于聚类的图结构,简化数据的可视化表示,帮助研究人员更好地理解细胞群体之间的关系和数据的整体拓扑结构。

7. 聚类分析

  • 目的:将具有相似基因表达谱的细胞归为一组,以推断细胞的身份,揭示数据中的细胞异质性,为后续深入分析细胞类型、功能及状态变化等提供基础。
  • 注意事项:聚类算法众多,不同算法对数据的要求和聚类结果存在差异。如k - 均值聚类需预先设定聚类数量,该数量往往难以准确预估,需通过启发式方法校准;且不同距离度量方式(如欧氏距离、余弦相似度、基于相关性的距离等)对聚类结果有影响,需根据数据特点选择合适的度量方式。 聚类得到的细胞簇不一定直接对应明确的细胞类型,细胞身份受多种因素影响,同一细胞类型在不同状态下可能被分到不同簇中。因此,使用 “细胞身份” 这一术语更为准确。在注释细胞簇时,需谨慎选择参考数据库或文献中的标记基因,避免因数据集差异导致的注释偏差。
  • 最佳实践:推荐使用基于单细胞KNN图的Louvain社区检测算法进行聚类。该算法在处理单细胞RNAseq数据时表现出色,能够有效检测出细胞簇,且其模块化优化函数中的分辨率参数可调整聚类的尺度,便于用户根据需求探索不同层次的细胞结构。聚类不必局限于单一分辨率,对特定细胞簇进行子聚类是深入研究数据中更详细子结构的有效方法,但需注意避免将噪声误判为有意义的模式。

8. 轨迹分析

  • 目的:细胞的发育和分化是连续动态的过程,聚类分析无法充分描述这种变化。轨迹分析旨在通过构建细胞间的动态模型,推断细胞的分化轨迹,揭示细胞从一种状态转变为另一种状态的过程,以及在这个过程中基因表达的变化规律。
  • 注意事项:不同的轨迹推断方法适用于不同复杂程度的轨迹模型。简单的线性或分叉轨迹可选择Slingshot等方法,而复杂的图、树或多分叉轨迹则更适合PAGA等方法。在选择方法时,需对预期的轨迹有一定的预判,且最好使用多种方法相互验证,避免方法偏差导致的错误推断。 推断出的轨迹不一定真实反映生物学过程,可能仅代表转录相似性。因此,需要收集更多证据来验证,如进行扰动实验、分析推断的调控基因动态以及参考RNA速度等信息。
  • 最佳实践:参考Saelens等人2018年的综述,根据预期轨迹的复杂程度选择合适的轨迹推断方法。在典型工作流程中,轨迹推断通常应用于降维后的数据;若存在其他同时发生的生物学过程影响,可先回归去除这些过程的生物学效应,以更准确地推断目标轨迹。 由于目前缺乏评估轨迹不确定性的有效方法,在解释轨迹结果时需谨慎,综合多方面证据进行判断,避免过度解读。

9. 基因水平分析

  • 目的:从基因层面深入探究单细胞数据中的分子信号,包括检测不同实验条件下基因的差异表达、分析基因集的功能富集情况以及推断基因调控网络,以揭示基因在细胞过程中的作用机制和相互关系。
  • 注意事项:在进行差异表达测试时,应使用未经校正的测量数据,并将技术协变量纳入模型,以准确估计差异表达基因。同时,要警惕模型中混淆变量的影响,仔细检查设计矩阵的秩,确保模型设定合理,避免因变量混淆导致错误的结果解读。基因集分析中,选择合适的数据库(如MSigDB、Gene Ontology、KEGG、Reactome等)和富集分析工具至关重要,不同数据库和工具的注释和算法存在差异,可能影响分析结果的准确性和可靠性。 基因调控网络推断方法在单细胞数据上的表现仍有待提高,推断出的调控关系存在不确定性。因此,应关注基因模块间的调控关系,而非单个基因的调控边,以提高结果的可靠性。
  • 最佳实践:推荐使用MAST或limma进行差异表达测试。MAST使用障碍模型考虑了单细胞数据中的dropout现象,在处理单细胞数据时表现出色;limma - voom在保证性能的同时,运行速度更快,可根据数据规模和计算资源选择合适的工具。在基因集分析中,根据研究目的选择相关的数据库对基因进行分组,然后使用可靠的富集分析工具进行测试,以深入解读差异表达结果。对于基因调控网络推断,虽然目前方法存在局限性,但在谨慎使用的前提下,仍可帮助识别生物学过程的因果调节因子,为进一步研究提供线索。

10. 分析平台

  • 目的:单细胞分析工作流程由多个独立开发的工具组成,分析平台通过提供一致的数据格式,促进数据在不同工具间的流动,为构建完整的分析流程提供基础框架,降低分析门槛,提高分析效率。
  • 注意事项:不同类型的分析平台各有优缺点和适用场景。命令行平台功能强大,但对用户的编程能力有一定要求;图形用户界面(GUI)平台操作简便,适合非专业用户进行探索性分析,但可能在灵活性和处理大规模数据能力上存在限制。选择平台时,需综合考虑自身的专业技能水平、数据规模以及分析目的。 部分平台对计算资源有较高要求,特别是在处理大规模单细胞数据集时,可能会受到本地计算能力或服务器资源的限制。在选择平台时,要充分评估自身的计算资源状况,确保平台能够正常运行。
  • 最佳实践:对于熟悉编程的用户,可选择命令行平台。其中,Scater在质量控制和预处理方面表现突出;Seurat功能全面,拥有丰富的工具和教程;scanpy作为基于Python的平台,在处理大规模数据时具有良好的扩展性,且能充分利用Python在机器学习领域的优势。对于非专业用户或进行探索性分析时,可选择图形用户界面平台。如Granatum集成的方法较多,能满足多样化的分析需求;ASAP操作便捷,但在处理大规模数据时存在局限性。若本地计算资源充足,可考虑使用在本地服务器上运行的平台和GUI包装器,如FASTGenomics、iSEE、IS - CellR等,以获得更好的性能和灵活性。
为了确保单细胞测序实验的成功率和数据可靠性,必须对每个关键步骤进行精心设计和优化,同时注意细节上的注意事项。首先,在细胞制备阶段,应使用高质量的细胞分离方法,比如微流控技术,它可以减少细胞损伤和交叉污染。接着,在文库制备阶段,应严格遵守文库制备的标准操作程序,注意使用高保真酶以减少突变引入,并确保文库浓度和片段大小分布符合测序要求。在测序过程中,选择合适测序深度和准确校准的测序平台是至关重要的,以保证足够的数据覆盖度和测序准确性。 参考资源链接:[单细胞测序工作流程详解:关键步骤与注意事项](https://wenku.csdn.net/doc/67kfi0i2hi) 在数据分析阶段,应用合适的生物信息学工具对数据进行处理和分析是关键。初级分析需要确保数据转换无误,并检查原始数据质量。二级分析中,多重分离和比对步骤要仔细进行,以提高数据的比对率和减少非目标区域的比对。三级分析则需要利用先进的生物信息学软件进行细胞亚群的聚类和基因表达的分析,以便深入理解细胞异质性和生物学意义。在整个过程中,实验者应持续进行质量控制和验证,确保实验的每个环节都达到最佳状态。 要更深入地了解这些步骤和注意事项,建议阅读《单细胞测序工作流程详解:关键步骤与注意事项》。这本书将为你提供详尽的单细胞测序工作流程,包括每个步骤的细节和最佳实践,帮助你系统地掌握如何优化实验过程,以提高实验的成功率和数据的可靠性。 参考资源链接:[单细胞测序工作流程详解:关键步骤与注意事项](https://wenku.csdn.net/doc/67kfi0i2hi)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

医学AppMatrix

文中代码请大家随意

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值