BZOJ 4017 小Q的无敌异或

题目:http://www.lydsy.com/JudgeOnline/problem.php?id=4017

题意:
给定一个长度为 n 的非负整数序列{An},求序列的所有子区间异或值之和模 998244353 ,和所有子区间之和的异或值。
n105,Ai106

题解:
先考虑第一问。
xor(i) 表示前 i 项的异或值,xor(l,r)表示第 l 项到第r项的异或值,那么 xor(l,r)=xor(r)xor(l1)
考虑 xor(l,r) 的二进制第 k 位是1的可能情况,当且仅当 xor(r) xor(l1) 的二进制第 k 位不同。
那么我们可以固定右端点r,算出有多少个 l 使xor(l,r)的第 k 位是1,假设已经算出右端点为 r 的答案,现在可以O(1)推到右端点为 r+1 的答案,因为对于 r+1 来说新增的 l 只有r+1一个,只需要 O(1) 将贡献产生即可。时间复杂度 O(nlogA)
再考虑第二问。
同第一问的想法,令 sum(i) 表示前 i 项的和,sum(l,r)表示第 l 项到第r项的和,那么 sum(l,r)=sum(r)sum(l1)
考虑答案的第 k 位是1的可能,一定是 sum(r)sum(l1) 的二进制第 k 位为1,这样的二元组个数为奇数。这个式子可以被表达成

(sum(r)sum(l1))mod2k+12k

那么对于每个 k ,我们可以将sum(i)mod2k+1进行离散化,按照右端点 r 升序枚举sum(r)mod2k+1,利用树状数组询问满足 (sum(r)sum(l1))mod2k+12k l 的个数,注意这个等式得到的sum(l1)可能是满足
sum(l1)mod2k+1(sum(r)mod2k+1)2k
0sum(l1)mod2k+1
的,也可能是满足
sum(l1)mod2k+1(sum(r)mod2k+1)2k+2k+1=(sum(r)mod2k+1)+2k
sum(r)mod2k+1<sum(l1)mod2k+1
的。时间复杂度 O(nlognlogA) ,常数很大。

代码:

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; 
typedef long long LL;
const int maxn = 100010, mod = 998244353;
int n, a[maxn], x[maxn], bit[maxn], ans1;
long long s[maxn], p[maxn], ans2;
void inc(int &x, int y)
{
    x += y;
    if(x >= mod)
        x -= mod;
}
void add(int x)
{
    for( ; x <= n; x += ~x & x + 1)
        bit[x] ^= 1;
}
int sum(int x)
{
    int ret = 0;
    for( ; x >= 0; x -= ~x & x + 1)
        ret ^= bit[x];
    return ret;
}
int idx(long long val)
{
    int L = -1, R = n;
    while(L < R)
    {
        int M = L + R + 1 >> 1;
        if(p[M] <= val)
            L = M;
        else
            R = M - 1;
    }
    return L;
}
int main()
{
    scanf("%d", &n);
    for(int i = 1; i <= n; ++i)
    {
        scanf("%d", &a[i]);
        x[i] = x[i - 1] ^ a[i];
        s[i] = s[i - 1] + a[i];
    }
    for(int k = 0, powk = 1; k < 30; ++k, inc(powk, powk))
    {
        int cnt[2] = {}, tmp = 0;
        for(int i = 0; i <= n; ++i)
        {
            inc(tmp, cnt[((x[i] >> k) & 1) ^ 1]);
            ++cnt[(x[i] >> k) & 1];
        }
        inc(ans1, (long long)powk * tmp % mod);
    }
    for(int k = 0; 1LL << k <= s[n]; ++k)
    {
        int tmp = 0;
        for(int i = 0; i <= n; ++i)
            p[i] = s[i] & ((1LL << k + 1) - 1);
        sort(p, p + n + 1);
        memset(bit, 0, sizeof bit);
        for(int i = 0; i <= n; ++i)
        {
            long long now = s[i] & ((1LL << k + 1) - 1);
            add(idx(now));
            tmp ^= sum(idx(now - (1LL << k))) ^ sum(idx(now + (1LL << k))) ^ sum(idx(now));
        }
        if(tmp)
            ans2 |= 1LL << k;
    }
    printf("%d %lld\n", ans1, ans2);
    return 0;
}
  • 4
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值