分享 | 顶刊高质量论文插图配色(含RGB值及16进制HEX码)(第二期)

hey论文插图配色分享第二期啦

这次还是用之前写了一个多小时的提取论文图片颜色并得出RGB值和16进制码并标注在原图的代码,做了几张图,在这里分享一下来自《PNAS》,《Nature》,《Science》高质量绘图及其配色:

这次图片有点多哇,是2022年几万张图里挑出来的,这期有几十张图,干货满满!收集不易,如果有用点个赞叭~


image 1


image 2


image 3


image 4


image 5


image 6


image 7


image 8


image 9


image 10


image 11


image 12


image 13


image 14


image 15


image 16


image 17


image 18


image 19


image 20


image 21


image 22


image 23


image 24


image 25


image 26


image 27


image 28


image 29


image 30


image 31


image 32


image 33


image 34


image 35


image 36


image 37


image 38


image 39


image 40


image 41


image 42


image 43


image 44


image 45


image 46


image 47


image 48


image 49


image 50


image 51


image 52


image 53


image 54


image 55


image 56


image 57


image 58


image 59


image 60


希望会有用叭!要是觉得有用的话过段时间再出哈,溜了溜了再次直接开摆,下期文章见~

### 关于SCI论文结构框图的配色方案设计 在SCI论文中,结构框图的设计不仅需要清晰地传达研究内容和逻辑关系,还需要通过合理的配色提升视觉效果。以下是一些关于SCI论文结构框图配色方案的关键点: #### 1. 色彩心理学的应用 色彩的选择应基于其心理效应以及对读者的影响。例如,蓝色通常代表冷静、理性,适合用于表示数据处理或分析部分;绿色象征自然与成长,可用于描述实验过程中的积极变化;红色则具有警示作用,可用来突出重要结论或异常情况[^1]。 #### 2. 使用简约而协调的颜色组合 为了保持图表的专业性和易读性,建议采用不超过三种主要颜色的搭配方式,并辅以灰色作为背景或其他次要元素的颜色。这种做法可以有效减少视觉干扰并增强重点信息的表现力。此外,在选择具体色调时应注意对比度,确保文字和图形能够被轻松识别[^3]。 #### 3. 借鉴已有优秀作品 可以从高质量期刊发表的文章或者知名科研机构发布的报告中获取灵感。这些材料往往经过精心设计,具备良好的美学价和技术量。比如,《Science》杂志在其文章插图中常用柔和渐变色系来区分不同层次的内容节点,同时利用线条粗细的变化进一步强化层级感[^2]。 #### 4. 工具支持下的自定义调整 当使用Visio等软件绘制网络结构图时,可以根据实际需求灵活调节各组件间的相对位置及其关联箭头的方向样式等等属性参数 。与此同时也要记得保存模板以便日后重复利用相同风格设置好的框架布局 . ```python import matplotlib.pyplot as plt from matplotlib.patches import Rectangle, ConnectionPatch fig, ax = plt.subplots(figsize=(8, 6)) # 定义矩形区域 rect1 = Rectangle((0.1, 0.1), 0.2, 0.2, color='lightblue', edgecolor='black') ax.add_patch(rect1) rect2 = Rectangle((0.4, 0.4), 0.2, 0.2, color='lightgreen', edgecolor='black') ax.add_patch(rect2) # 添加连接线 con = ConnectionPatch(xyA=(0.2, 0.2), xyB=(0.4, 0.4), coordsA="data", coordsB="data", arrowstyle="-|>", mutation_scale=20, lw=1.5, color='gray') ax.add_artist(con) plt.xlim(0, 1) plt.ylim(0, 1) plt.axis('off') plt.show() ``` 上述代片段展示了如何用Python Matplotlib库创建简单的流程示意草稿,其中包了两个方块形状及一条指向型连线,这正是构建复杂科学文献内部架构示意图的基础单元之一。 ---
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

slandarer

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值