/*
题意:有一些长方形,面积为1*x或者2*x,现在要算出能把这些
长方形全部包含起来的长方形的大小(2*m),简单来说就是
给你一个宽为2的长方形,求出长最小为多少时能把全部长方形
包含起来。
解法:因为大的长方形宽始终为2,而其他长方形宽为1/2。即当宽为2的
长方形直接放入(即长度直接加上对于得长度),而对于所以宽为1的
长方形,相当于把大的长方形分成2边来装这些宽为1的长方形,当
两边的长度尽可能相等时候,大长方形的长度最短,这是可以转换成
01背包问题,因为要尽可能的平均分,所以背包容量为总容量的一半,
当背包容量最大时,长度最小。
*/
#include<iostream>
#include<cstring>
using namespace std;
const int MAXN=10005;
int dp[MAXN],pack[105];
//dp数组,存放宽为1的长方形的数组
int top,n,a,b,t,temp,minpack;
int mymax(int a,int b)
{
return a>b?a:b;
}
int main()
{
cin>>t;
while(t--)
{
cin>>n;
top=0,temp=0,minpack=0;
//pack数组当前的个数,宽为1的长方形的总长度,大长方形的最小长度
memset(dp,0,sizeof(dp));
memset(pack,0,sizeof(pack));
for(int i=0;i<n;i++)
{
cin>>a>>b;
if(a==1)//宽为1
{
pack[top++]=b;//存进数组里
temp+=b;//累计宽为1的长方形的总长度
}
else//宽为2的直接放入大长方形中,长度累加
{
minpack+=b;
}
}
for(int i=0;i<top;i++)//在宽为1的长方形里进行01背包
{
for(int j=temp/2;j>=pack[i];j--)//使背包的一半尽可能大
{ //即相当于两边的长度尽可能相等
dp[j]=mymax(dp[j],dp[j-pack[i]]+pack[i]);
}
}
minpack+=temp-dp[temp/2];//最后再加上宽为1的长方形最小需要的长度
cout<<minpack<<endl;
}
return 0;
}
湖南多校对抗赛(A - A)
最新推荐文章于 2021-04-13 11:27:41 发布