湖南多校对抗赛(A - A)

/*
题意:有一些长方形,面积为1*x或者2*x,现在要算出能把这些
      长方形全部包含起来的长方形的大小(2*m),简单来说就是
	  给你一个宽为2的长方形,求出长最小为多少时能把全部长方形
	  包含起来。
解法:因为大的长方形宽始终为2,而其他长方形宽为1/2。即当宽为2的
	  长方形直接放入(即长度直接加上对于得长度),而对于所以宽为1的
	  长方形,相当于把大的长方形分成2边来装这些宽为1的长方形,当
	  两边的长度尽可能相等时候,大长方形的长度最短,这是可以转换成
	  01背包问题,因为要尽可能的平均分,所以背包容量为总容量的一半,
	  当背包容量最大时,长度最小。
*/
#include<iostream>
#include<cstring>
using namespace std;
const int MAXN=10005;
int dp[MAXN],pack[105];
//dp数组,存放宽为1的长方形的数组
int top,n,a,b,t,temp,minpack;
int mymax(int a,int b)
{
	return a>b?a:b;
}
int main()
{
	cin>>t;
	while(t--)
	{
		cin>>n;
		top=0,temp=0,minpack=0;
		//pack数组当前的个数,宽为1的长方形的总长度,大长方形的最小长度
		memset(dp,0,sizeof(dp));
		memset(pack,0,sizeof(pack));
		for(int i=0;i<n;i++)
		{
			cin>>a>>b;
			if(a==1)//宽为1
			{
				pack[top++]=b;//存进数组里
				temp+=b;//累计宽为1的长方形的总长度
			}
			else//宽为2的直接放入大长方形中,长度累加
			{
				minpack+=b;
			}
		}
		for(int i=0;i<top;i++)//在宽为1的长方形里进行01背包
		{
			for(int j=temp/2;j>=pack[i];j--)//使背包的一半尽可能大
			{                               //即相当于两边的长度尽可能相等
				dp[j]=mymax(dp[j],dp[j-pack[i]]+pack[i]);
			}
		}
		minpack+=temp-dp[temp/2];//最后再加上宽为1的长方形最小需要的长度
		cout<<minpack<<endl;
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值