已知多边形各顶点的坐标,求多边形面积

正多边形内角计算公式与半径无关 
要已知正多边形边数为N 内角和=180(N-2) 
半径为R 
圆的内接三角形面积公式:(3倍根号3)除以4再乘以R方 
外切三角形面积公式:3倍根号3 R方 
外切正方形:4R方 
内接正方形:2R方 
五边形以上的就分割成等边三角形再算 
内角和公式——(n-2)*180` 
我们都知道已知A(x1,y1)、B(x2,y2)、C(x3,y3)三点的面积公式为 
|x1 x2 x3| 
S(A,B,C) = |y1 y2 y3| * 0.5 = [(x1-x3)*(y2-y3) - (x2-x3)*(y1-y3)]*0.5 
|1 1 1 | 
(当三点为逆时针时为正,顺时针则为负的) 
对多边形A1A2A3、、、An(顺或逆时针都可以),设平面上有任意的一点P,则有:
S(A1,A2,A3,、、、,An) 
= abs(S(P,A1,A2) + S(P,A2,A3)+、、、+S(P,An,A1)) 
P是可以取任意的一点,用(0,0)时就是下面的了:
设点顺序 (x1 y1) (x2 y2) ...(xn yn) 
则面积等于 
|x1 y1| |x2 y2| |xn yn| 
0.5 * abs( | | + | | + .+ | | ) 
|x2 y2| |x3 y3| |x1 y1| 
其中 
|x1 y1| 
| |=x1*y2-y1*x2 
|x2 y2| 
因此面积公式展开为:
|x1 y1| |x2 y2| |xn yn| 
0.5 * abs( | | + | | + .+ | | )=0.5*abs(x1*y2-y1*x2+x2*y3-y2*x3+...+xn*y1-yn*x1) 

|x2 y2| |x3 y3| |x1 y1|


总结起来就是一个公式:设点顺序 (x1 y1) (x2 y2) ...(xn yn) ,

S=0.5*abs(x1*y2-y1*x2+x2*y3-y2*x3+...+xn*y1-yn*x1) 。

若要求的是有向面积,则去掉abs(不用求绝对值)。

(当三点为逆时针时为正,顺时针则为负的) 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值