数学
文章平均质量分 73
slime_kirito
讨厌无力的自己
展开
-
排列和组合
排列组合计算公式:排列A(n,m)=n×(n-1)....(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)组合C(n,m)= A( n, m) / A( m, m) =n!/m!(n-m)!;问题:从1到n(包含)中选出m限制条件:1、无限制2、各位数字升序排列3、不能有重复数字4、各位数字升序排列并且不能有重复数字1. 这个不需要原创 2015-04-02 15:43:15 · 818 阅读 · 0 评论 -
三份查找
我们都知道 二分查找 适用于单调函数中逼近求解某点的值。如果遇到凸性或凹形函数时,可以用三分查找求那个凸点或凹点。下面的方法应该是三分查找的一个变形。如图所示,已知左右端点L、R,要求找到白点的位置。思路:通过不断缩小 [L,R] 的范围,无限逼近白点。做法:先取 [L,R] 的中点 mid,再取 [mid,R] 的中点 mmid,通过比较 f(原创 2015-10-22 23:04:46 · 360 阅读 · 0 评论 -
快速幂算法
原文地址:http://blog.csdn.net/hkdgjqr/archive/2010/03/15/5381028.aspx快速求正整数次幂2007-05-05 12:21快速求正整数次幂,当然不能直接死乘。举个例子:3 ^ 999 = 3 * 3 * 3 * … * 3直接乘要做998次乘法。但事实上可以这样做,先求出2^k次幂:3 ^ 2转载 2015-08-06 20:47:48 · 411 阅读 · 0 评论 -
几种判断素数的办法。
(1)最基本素数判定方法大家熟悉,只用看看2到n(或n的平方根)之间有没有n的约数:#includevoid main(){ int i,n; scanf("%d",&n); for(i=2;i if(n%i==0)break; if(i else puts("Yes");}此方法适用于判定较少数,数据量大时会转载 2015-05-19 16:00:08 · 919 阅读 · 0 评论 -
高效幂算法
《数据结构与算法分析》mark.Allen.weiss中提供的分治算法(美) Mark Allen Weiss 计算一个整数的幂 XN 的常见算法是使用 N-1 次乘法自乘。然而我们可以找到更好的算法。可以应用这样一种递归算法:如果 N 是偶数,有XN=XN/2 * X N/2 , 如果 N 是奇数,则有 XN =X (N-1)/2 * X (N-1)/2转载 2015-06-16 17:11:44 · 469 阅读 · 0 评论 -
筛选法求素数改进
以前稍微总结了下求素数的办法。但是无奈效率都不高。今天逛了很多关于求素数的博客,于是总结了一下最终写出了一个筛选法的改进算法。筛选法:(一般筛选法)这种方法比较好理解,初始时,假设全部都是素数,当找到一个素数时,显然这个素数乘上另外一个数之后都是合数(注意上面的 i*i , 比 i*2 要快点 ),把这些合数都筛掉,即算法名字的由来。但仔细分析能发现,这种方法原创 2015-06-15 22:24:02 · 1317 阅读 · 1 评论 -
判断一个整数x是否是2的N次方。
前提,x > 0。判断一个整数x是否是2的N次方。方法之一是判断x & (x - 1)==0。若为True,则x是2的N次方;若为False,则x不是2的N次方。#includeusing namespace std;int main(){ int x;//x>0. while (cin >> x) { if ((x&(x - 1)) == 0)转载 2015-05-21 15:37:51 · 775 阅读 · 0 评论 -
怎么判断一个数能不能被某个数整除。
文章内容来源趣味数学。 发现都是一些小技巧。所以就积累下来了。本文的某个数有:7,11,12,15,18,45,13.首先是11:怎样判断一个数能不能被11整除? 判断一个数能不能被11整除与判断一个数能不能被7整除一样,都没有直接判断的方法,需要借助间接的方法,这种间接的方法有两种,其一是“割减法”,其二是奇偶位差法。 (1)割减法:判断被11整除的割减法与判断被转载 2015-04-23 16:17:21 · 13278 阅读 · 1 评论 -
排列和组合
排列组合计算公式:排列A(n,m)=n×(n-1)....(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)组合C(n,m)= A( n, m) / A( m, m) =n!/m!(n-m)!;问题:从1到n(包含)中选出m限制条件:1、无限制2、各位数字升序排列3、不能有重复数字4、各位数字升序排列并且不能有重复数字原创 2015-04-12 11:29:24 · 444 阅读 · 0 评论 -
已知多边形各顶点的坐标,求多边形面积
正多边形内角计算公式与半径无关 要已知正多边形边数为N 内角和=180(N-2) 半径为R 圆的内接三角形面积公式:(3倍根号3)除以4再乘以R方 外切三角形面积公式:3倍根号3 R方 外切正方形:4R方 内接正方形:2R方 五边形以上的就分割成等边三角形再算 内角和公式——(n-2)*180` 我们都知道已知A(x1,y1)、B(x2,y2)、C(x3,y3)转载 2015-04-10 17:29:23 · 5963 阅读 · 1 评论 -
【数值分析】迭代法解方程:牛顿迭代法、Jacobi迭代法
牛顿迭代公式设已知方程f(x)=0的近似根x0 ,则在x0附近f(x)可用一阶泰勒多项式近似代替.因此, 方程f(x)=0可近似地表示为p(x)=0。用x1表示p(x)=0的根,它与f(x)=0的根差异不大. 设 ,由于x1满足解得重复这一过程,得到迭代公式: 这就是著名的牛顿迭代公式,它相应的不动点方程为转载 2015-10-24 10:39:30 · 1349 阅读 · 0 评论