三份查找

我们都知道 二分查找 适用于单调函数中逼近求解某点的值。

如果遇到凸性或凹形函数时,可以用三分查找求那个凸点或凹点。

下面的方法应该是三分查找的一个变形。


如图所示,已知左右端点L、R,要求找到白点的位置。

思路:通过不断缩小 [L,R] 的范围,无限逼近白点。

做法:先取 [L,R] 的中点 mid,再取 [mid,R] 的中点 mmid,通过比较 f(mid) 与 f(mmid) 的大小来缩小范围。

           当最后 L=R-1 时,再比较下这两个点的值,我们就找到了答案。

1、当 f(mid) > f(mmid) 的时候,我们可以断定 mmid 一定在白点的右边。

反证法:假设 mmid 在白点的左边,则 mid 也一定在白点的左边,又由 f(mid) > f(mmid) 可推出 mmid < mid,与已知矛盾,故假设不成立。

所以,此时可以将 R = mmid 来缩小范围。

2、当 f(mid) < f(mmid) 的时候,我们可以断定 mid 一定在白点的左边。

反证法:假设 mid 在白点的右边,则 mmid 也一定在白点的右边,又由 f(mid) < f(mmid) 可推出 mid > mmid,与已知矛盾,故假设不成立。

同理,此时可以将 L = mid 来缩小范围。

一. 概念
在二分查找的基础上,在右区间(或左区间)再进行一次二分,这样的查找算法称为三分查找,也就是三分法。三分查找通常用来迅速确定最值。

二分查找所面向的搜索序列的要求是:具有单调性(不一定严格单调);没有单调性的序列不是使用二分查找。
与二分查找不同的是,三分法所面向的搜索序列的要求是:序列为一个凸性函数。通俗来讲,就是该序列必须有一个最大值(或最小值),在最大值(最小值)的左侧序列,必须满足不严格单调递增(递减),右侧序列必须满足不严格单调递减(递增)。如下图,表示一个有最大值的凸性函数:



二、算法过程

(1)与二分法类似,先取整个区间的中间值mid。

mid = (left + right) / 2;  
(2)再取右侧区间的中间值midmid,从而把区间分为三个小区间。

midmid = (mid + right) / 2;  
(3)我们mid比midmid更靠近最值,我们就舍弃右区间,否则我们舍弃左区间。
比较mid与midmid谁最靠近最值,只需要确定mid所在的函数值与midmid所在的函数值的大小。当最值为最大值时,

mid与midmid中较大的那个自然更为靠近最值。最值为最小值时同理。 

if (cal(mid) > cal(midmid))  
    right = midmid;  
else  
    left = mid;  

(4)重复(1)(2)(3)直至找到最值。

注:函数cal()根据题目的意思计算,一般是一个计算公式。

对于int类型的三分:

int SanFen(int l,int r) //找凸点  
{  
    while(l < r-1)  
    {  
        int mid  = (l+r)/2;  
        int mmid = (mid+r)/2;  
        if( f(mid) > f(mmid) )  
            r = mmid;  
        else  
            l = mid;  
    }  
    return f(l) > f(r) ? l : r;  
} 
对于double类型的三分:

const double EPS = 1e-10;  
double ternarySearch(double low, double high)  
{  
    double mid, midmid;  
    while (low + EPS < high)  
    {  
        mid = (low + high) / 2;  
        midmid = (mid + high) / 2;  
        double mid_value = calc(mid);  
        double midmid_value = calc(midmid);  
        if (mid_value > midmid_value)  
            high = midmid;  
        else  
            low = mid;  
    }  
    return low;  
}  

另一种double型的写法


const double EPS=1e-10;
double ternary_search(double l,double r){ //三分查找求最小值  
    while(l + EPS < r){  
        double left = (2*l + r)/3;  
        double right = (2*r + l)/3;  
        double tmp1 = cal(left);  
        double tmp2 = cal(right);  
        if(tmp1 > tmp2) l = left;  
        else        r = right;  
    }  
    return l;  
} 

对于求解一些实际问题,当公式难以推导出来时,二分、三分法可以较为精确地求解出一些临界值,且效率也是令人满意的。


内容大部分转自:http://blog.csdn.net/pi9nc/article/details/9666627


  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值