下面简单介绍一下 一种快速的图像特征的描述子--brief
brief 描述子的优点是快速,其原理非常简单故很快:
Its performance is similar to SIFT in many respects,including robustness to lighting, blur, and perspective dis-tortion. However, it is very sensitive to in-plane rotation
1. 对图像进行高斯滤波,即平滑图像。
2. 获取图像中一特征点一块临域,大小为s×s。
3. 随机获取服从高斯分布的N(N=128,256,512)组像素点对(即2×N个),其中高斯核分别取 s×s/25,s*s/100,(原因见论文BRIEF: Binary Robust Independent Elementary Features) 。
4. 定义一个数组desc[N],记录随机获取的图像点两两比较结果,大为1,小为0,这样desc就代表了这个特征点的描述子。
特征点的匹配是利用汉明距离(在信息论中,两个等长字符串之间的汉明距离是两个字符串对应位置的字符不同的个数。换句话说,它就是将一个字符串变换成另外一个字符串所需要替换的字符个数)
5. 在计算比较的两个特征点的brief特征点时,需要保持用同一组高斯随机点对。
由于brief特征点是利用两两像素点对比较获得的,故由于噪声的存在,可能造成误差比较大。因此可以借用ORB中的利用像素块的和的差代替像素点的差。