数据集和数据集下载接口
提供了torch.utils.data.DataLoader和torch.utils.data.Dataset。可以像使用自己的数据一样使用预加载的数据集。Dataset保存了样本和标签,DataLoader围绕数据集包装一个可迭代对象方便访问样本。
Pytorch有很多预加载数据集化为torch.utils.data.Dataset的子集,且提供了相应数据专门的工具。
下载数据集
以下示例怎么从TorchVison下载Fashion-MNIST数据集。其包含六万训练样本和一万测试样本。每个样本是28*28的灰阶图,标签为十类中的一个。
使用的参数:
- root :训练或测试数据保存的路径
- train:指明是训练还是测试数据集
- download=True:如果root不存在数据则从网上下载数据
- transform及target_transform:指明特征和标签转换
import torch
from torch.utils.data import Dataset
from torchvision import datasets
from torchvision.transforms import ToTensor
import matplotlib.pyplot as plt
training_data = datasets.FashionMNIST(
root="data",
train=True,
download=True,
transform=ToTensor()
)
test_data = datasets.FashionMNIST(
root="data",
train=False,
download=True,
transform=ToTensor()
)
迭代、可视化数据集
可以像list那样索引操作Datasets:training_data[index]。使用matplotlib可视化一些样本。
labels_map = {
0: "T-Shirt",
1: "Trouser",
2: "Pullover",
3: "Dress",
4: "Coat",
5: "Sandal",
6: "Shirt",
7: "Sneaker",
8: "Bag",
9: "Ankle Boot",
}
figure = plt.figure(figsize=(8,8))
cols, rows = 3,3
for i in range(1,cols*rows+1):
sample_idx = torch.randint(len(training_data),size=(1,)).item()
img,label = training_data[sample_idx]
print(label)
figure.add_subplot(rows, cols, i)
plt.title(labels_map[label])
plt.axis("off")
plt.imshow(img.squeeze(),cmap="gray")
plt.show()
创建自己的数据集
定制的数据集类必须执行三个函数:__int__,__len__,__getitem__.看下这几个实例;FashionMNIST图像保存在img_dir路径下,标签保存在CSV文件annotations_file。
import os
import pandas as pd
from torchvision.io import read_image
class CustomImageDataset(Dataset):
def __init__(self,annotations_file,img_dir,transform=None,target_transform=None):
self.img_labels = pd.read_csv(annotations_file)
self.img_dir = img_dir
self.transform = transform
self.target_transform = target_transform
def __len__(self):
return len(self.img_labels)
def __getitem__(self,idx):
img_path = os.path.join(self.img_dir,self.img_labels.iloc[idx,0])
image = read_image(img_path)
label = self.img_labels.iloc[idx,1]
if self.transform:
image = self.transform(image)
if self.target_transform:
label = self.target_transform(label)
return imgae,label
- __init__
该函数在Dataset目标实例化的时候仅运行一次,进行一些初始化。
label.csv文件的格式类似
tShirt1.jpg,0
tShirt2.jpg,0
- __len__
返回数据集的样本数目
- __getitem__
下载数据集中第idx位置的样本,并返回样本。基于索引,确认图片在硬盘的位置,并将之转换为tensor(使用read_image),从CSV文件中获取相应的标签,返回tensor图片和标签。
使用DataLoaders准备自己的训练数据
dataset同时获得样本的数据特征和标签。训练模型时,一般想小批量的传输样本,在每个迭代去重新调整数据以减少模型过拟合,使用python的多进程来提升数据重载。
DataLoader是一个可迭代的程序,将复杂的功能抽象为一个API
from torch.utils.data import DataLoader
train_dataloader = DataLoader(train_data,batch_size=64,shuffle=True)
test_dataloader = DataLoader(test_data,batch_size=64,shuffle=True)
DataLoader进行迭代
train_features, train_labels = next(iter(train_dataloader))
print(f"Feature batch shape: {train_features.size()}")
print(f"Labels batch shape: {train_labels.size()}")
img = train_features[0].squeeze()
label = train_labels[0]
plt.imshow(img, cmap="gray")
plt.show()
print(f"Label: {label}")