PyTorch学习笔记(二)--- 基本知识

本文介绍了如何使用PyTorch的torch.utils.data模块加载和处理数据集,包括预加载的Fashion-MNIST数据集的下载与使用,以及如何创建自定义数据集。通过DataLoader进行批量数据加载,实现模型训练时的数据迭代。同时,展示了数据集的可视化和样本的预处理操作。
摘要由CSDN通过智能技术生成

数据集和数据集下载接口

        提供了torch.utils.data.DataLoader和torch.utils.data.Dataset。可以像使用自己的数据一样使用预加载的数据集。Dataset保存了样本和标签,DataLoader围绕数据集包装一个可迭代对象方便访问样本。

Pytorch有很多预加载数据集化为torch.utils.data.Dataset的子集,且提供了相应数据专门的工具。

下载数据集

        以下示例怎么从TorchVison下载Fashion-MNIST数据集。其包含六万训练样本和一万测试样本。每个样本是28*28的灰阶图,标签为十类中的一个。

        使用的参数:

  • root :训练或测试数据保存的路径
  • train:指明是训练还是测试数据集
  • download=True:如果root不存在数据则从网上下载数据
  • transform及target_transform:指明特征和标签转换
import torch
from torch.utils.data import Dataset
from torchvision import datasets
from torchvision.transforms import ToTensor
import matplotlib.pyplot as plt


training_data = datasets.FashionMNIST(
    root="data",
    train=True,
    download=True,
    transform=ToTensor()
)

test_data = datasets.FashionMNIST(
    root="data",
    train=False,
    download=True,
    transform=ToTensor()
)

迭代、可视化数据集

        可以像list那样索引操作Datasets:training_data[index]。使用matplotlib可视化一些样本。

labels_map = {
    0: "T-Shirt",
    1: "Trouser",
    2: "Pullover",
    3: "Dress",
    4: "Coat",
    5: "Sandal",
    6: "Shirt",
    7: "Sneaker",
    8: "Bag",
    9: "Ankle Boot",
}
figure = plt.figure(figsize=(8,8))
cols, rows = 3,3
for i in range(1,cols*rows+1):
    sample_idx = torch.randint(len(training_data),size=(1,)).item()
    img,label = training_data[sample_idx]
    print(label)
    figure.add_subplot(rows, cols, i)
    plt.title(labels_map[label])
    plt.axis("off")
    plt.imshow(img.squeeze(),cmap="gray")
plt.show()

创建自己的数据集

        定制的数据集类必须执行三个函数:__int__,__len__,__getitem__.看下这几个实例;FashionMNIST图像保存在img_dir路径下,标签保存在CSV文件annotations_file。

import os
import pandas as pd
from torchvision.io import read_image

class CustomImageDataset(Dataset):
    def __init__(self,annotations_file,img_dir,transform=None,target_transform=None):
        self.img_labels = pd.read_csv(annotations_file)
        self.img_dir = img_dir
        self.transform = transform
        self.target_transform = target_transform
    def __len__(self):
        return len(self.img_labels)
    def __getitem__(self,idx):
        img_path = os.path.join(self.img_dir,self.img_labels.iloc[idx,0])
        image = read_image(img_path)
        label = self.img_labels.iloc[idx,1]
        if self.transform:
            image = self.transform(image)
        if self.target_transform:
            label = self.target_transform(label)
        return imgae,label
  •  __init__

该函数在Dataset目标实例化的时候仅运行一次,进行一些初始化。

label.csv文件的格式类似

        tShirt1.jpg,0

        tShirt2.jpg,0

  • __len__

返回数据集的样本数目

  • __getitem__

 下载数据集中第idx位置的样本,并返回样本。基于索引,确认图片在硬盘的位置,并将之转换为tensor(使用read_image),从CSV文件中获取相应的标签,返回tensor图片和标签。

使用DataLoaders准备自己的训练数据

dataset同时获得样本的数据特征和标签。训练模型时,一般想小批量的传输样本,在每个迭代去重新调整数据以减少模型过拟合,使用python的多进程来提升数据重载。

DataLoader是一个可迭代的程序,将复杂的功能抽象为一个API

from torch.utils.data import DataLoader

train_dataloader = DataLoader(train_data,batch_size=64,shuffle=True)
test_dataloader = DataLoader(test_data,batch_size=64,shuffle=True)

DataLoader进行迭代

train_features, train_labels = next(iter(train_dataloader))
print(f"Feature batch shape: {train_features.size()}")
print(f"Labels batch shape: {train_labels.size()}")
img = train_features[0].squeeze()
label = train_labels[0]
plt.imshow(img, cmap="gray")
plt.show()
print(f"Label: {label}")

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值