[数论][扩展欧几里得算法][NOIP2012] 同余方程

描述

求关于x的同余方程ax ≡ 1 (mod b)的最小正整数解。
格式

输入格式

输入只有一行,包含两个正整数a, b,用一个空格隔开。

输出格式

输出只有一行,包含一个正整数x0,即最小正整数解。输入数据保证一定有解。

样例输入

3 10

样例输出

7

提示

对于40%的数据,2 ≤b≤ 1,000;
对于60%的数据,2 ≤b≤ 50,000,000;
对于100%的数据,2 ≤a, b≤ 2,000,000,000。

var
  a,b,d,x,y:int64;
procedure exgcd(a,b:int64;var d,x,y:int64);
var t:int64;
begin
  if b=0
  then
   begin d:=a; x:=1; y:=0; end
  else
   begin exgcd(b,a mod b,d,x,y); t:=x; x:=y; y:=t-y*(a div b);
   end;
end;

begin
  readln(a,b);
  exgcd(a,b,d,x,y);
  while x<0 do 
   inc(x,b);
  writeln(x);
end.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值