分而治之,各个击破是兵家常用的策略之一。在战争中,我们希望首先攻下敌方的部分城市,使其剩余的城市变成孤立无援,然后再分头各个击破。为此参谋部提供了若干打击方案。本题就请你编写程序,判断每个方案的可行性。
输入格式:
输入在第一行给出两个正整数 N 和 M(均不超过10 000),分别为敌方城市个数(于是默认城市从 1 到 N 编号)和连接两城市的通路条数。随后 M 行,每行给出一条通路所连接的两个城市的编号,其间以一个空格分隔。在城市信息之后给出参谋部的系列方案,即一个正整数 K (<= 100)和随后的 K 行方案,每行按以下格式给出:
Np v[1] v[2] ... v[Np]
其中 Np 是该方案中计划攻下的城市数量,后面的系列 v[i] 是计划攻下的城市编号。
输出格式:
对每一套方案,如果可行就输出“YES”,否则输出“NO”。
输入样例:
10 11
8 7
6 8
4 5
8 4
8 1
1 2
1 4
9 8
9 1
1 10
2 4
5
4 10 3 8 4
6 6 1 7 5 4 9
3 1 8 4
2 2 8
7 9 8 7 6 5 4 2
输出样例:
NO
YES
YES
NO
NO
题意:在占领一部分城市后,判断剩下的城市是否都是孤立无援的城市(与其他未被占领的城市都不连通),是就输出YES,否就输出NO。
思路:用一个二维数组存邻接矩阵,用一维数组存被占领的城市。遍历未被占领的城市对应的邻接表,若该城市与其他城市不相同,那么邻接表里的元素一定都是被占领的城市,或者邻接表为空。若任一邻接表中有一个元素为未被占领的城市就直接输出NO。
选用vector容器来存邻接表:
题目中第一组被占领的城市:
Vis[ ]={ 10 , 3 , 8 , 4 };
未被占领的城市的邻接表(红色表示该城市被占领):
在城市1中以及出现连通城市有未被占领的城市,直接输出NO,下面的数据可以不用遍历。
题目中第二组被占领城市:
Vis[ ]={ 6 , 1 , 7 , 5 , 4 , 9 };
未被占领的城市的邻接表(红色表示该城市被占领):
所有未被占领的城市的连通城市都被占领,输出YES。
AC代码:
#include<iostream>
#include<cstring>
#include<vector>
using namespace std;
bool vis[10005];//用来标记被占领的城市
vector<int> vec[10005];//存邻接表
int main()
{
int n,m,i,x,y;
cin>>n>>m;
for(i=0;i<m;i++)
{
scanf("%d %d",&x,&y);
vec[x].push_back(y);//邻接表
vec[y].push_back(x);//城市互通
}
int T,t;
cin>>T;
while(T--)
{
memset(vis,0,sizeof(vis));
bool flag=0;//标记图是否连通
cin>>t;
for(i=0;i<t;i++)
{
scanf("%d",&x);
vis[x]=1;//标记被占领的城市
}
for(i=1;i<=n;i++)
{
if(!vis[i])//没被占领的城市
{
for(y=0;y<vec[i].size();y++)//遍历可连通的城市
{
if(!vis[vec[i][y]])//如果与其相同的城市没被占领,直接跳出所有循环输出No
{
flag=1;
break;
}
}
}
if(flag)//标记为真跳出所有循环
break;
}
if(flag)
cout<<"NO"<<endl;
else
cout<<"YES"<<endl;
}
return 0;
}