前言:
给定一个二叉树的根节点 root ,和一个整数 targetSum ,求该二叉树里节点值之和等于 targetSum 的 路径 的数目。
路径 不需要从根节点开始,也不需要在叶子节点结束,但是路径方向必须是向下的(只能从父节点到子节点)。
本题这里有两种解法:
- 类似暴力,可以参照113. 路径总和 II这题,只不过多了遍历整棵树这个过程而已,这种解法多了很多重复的计算
前缀和,本篇文章主要讲解这种解法
第一眼看到这个题目时,想的就是暴力或则前缀和
来解决。暴力的话,感觉太low了,可是前缀和我也只做过在数组中的啊,这nm前缀跑树上来,我这咋写??怎么定义前缀数组??麻了呀!!!
算了,看题解!!!
这一看,这好像似曾相识啊,跟以前写的那题思想一样啊!
560. 和为 K 的子数组
主要思路为:
我们用HashMap时,将前缀和保存为Key,前缀和出现的次数保存为value
开始遍历后,我们计算前缀和preSum,如果preSum-k存在时,说明中间这个子数组则为答案。下面这个图可以很好的解释;
否则的话我们将preSum放入HashMap中
class Solution {
public int pathSum(TreeNode root, int targetSum) {
Map<Integer,Integer> map=new HashMap<>();
//这里必须先把0放进去;
//不放的话,比如说只有一个节点3,目标和也为3,这样的话答案就为0.
map.put(0,1);
return prefix(root,targetSum,map,0);
}
private int prefix(TreeNode root, int targetSum, Map<Integer, Integer> map,int pre) {
if(root==null) return 0;
//计算当前节点的前缀和
pre=pre+root.val;
int res=0;
//获取到这个节点,满足条件的个数
res=map.getOrDefault(pre-targetSum,0);
//将该前缀和写入map中
map.put(pre,map.getOrDefault(pre,0)+1);
//获取左子树符合条件的个数
res+=prefix(root.left,targetSum,map,pre);
//获取右子树符合条件的个数
res+=prefix(root.right,targetSum,map,pre);
//回溯回去,必须去掉当前这个节点的前缀和
map.put(pre,map.get(pre)-1);
return res;
}
}
如果看到这里不太明白的,可以先去把560. 和为 K 的子数组这题写了,相信你就会豁然开朗了