深度学习
文章平均质量分 87
AutoXTruck
自动驾驶行业从业者,分享相关技术文章与行业心得体会,希望对你有所帮助。
展开
-
【DeepSORT系列之】模型训练pytorch版与模型部署操作
目录模型训练模型转换模型部署小结参考模型训练训练代码链接ZQPei/deep_sort_pytorch关于环境配置,你按照requirements.txt进行安装即可。参数配置:--data_dir # 数据路径--gpu_id # 使用gpu id--lr # 学习率--resume # 是否读取之前模型继续训练关于训练Mars数据集在测试ACC时候精度很低的情况问题high loss low test acc。主要问题在于Mars数据集你需要将bbox_train文件夹下面的数据原创 2022-04-11 19:26:07 · 3784 阅读 · 11 评论 -
【DeepSORT系列之】Cosine Metric Learning训练与demo可视化
训练数据准备:由于训练代码目前支持两种数据集如下,分别包含各自的数据准备方式。Market-1501数据集介绍Mars数据集介绍代码准备:cosine_metric_learningdemo代码准备:deep_sort训练启动命令:训练mars数据集脚本如下:python train_mars.py \ --dataset_dir=/media/holo/B834B57734B538E8/tracking/MARs \ --loss_mode=cosine-softmax原创 2022-03-17 18:50:51 · 5743 阅读 · 1 评论 -
【DeepSORT算法】系列之深度解读
目录DeepSORT算法DeepSORT算法流程图DeepSORT算法代码解读小结参考DeepSORT算法DeepSORT算法流程图DeepSORT算法代码解读小结参考Deep sort算法代码解读论文翻译DeepSORT原创 2022-02-22 20:49:29 · 1103 阅读 · 0 评论 -
second.pytorch代码分析(code-framework & tricks)
简述之所以想写这篇博客,主要原因在于阅读别人的代码时候,首先希望把流程架构弄清楚,然后才方便进行修改。second.pytorch代码量比较大,刚开始拿到时候,我也是一头雾水,硬着头皮往下面去看,配置环境(没有跑起来的建议去下载我的docker镜像,深度学习的利器,避免二次配置软件环境问题),让其跑起来方便调试来进行阅读。话不多说,现在开始进行简要分析一下second.pytorch点云检测这部...原创 2019-12-06 21:02:35 · 4325 阅读 · 5 评论 -
NVIDIA_Jetson_Xavier安装second.pytorch环境
简述说起在nvidia的xavier上面安装second.pytorch算法环境,也是醉了。没有什么特别的原因,就是在没有对second.pytorch算法pytorch模型进行tensorrt加速时候,单纯的项测试一下该算法能够跑多少fps,为以后优化过在tensorrt下进行对比。好吧,这个单纯的想法,导致付出时间不少。以此记录下来,避免其它相同需求的同学跨坑。ok,废话不多说,那我们开始遨...原创 2019-10-13 10:41:56 · 4067 阅读 · 16 评论 -
pointpillars点云算法TensorRT环境加速系列三
简述在之前的两篇博客基础上,继续写下通过TensorRT加速onnx模型的速度与精度提升了多少,主要是通过github上开源的代码onnx_tensorrt来优化加载onnx进行加速。onnx_tensorrt环境配置有点麻烦,需要相对应的onnx与tensorrt与onnx_tensorrt的版本。我的版本为:onnx = 1.4.0 + tensorrt = 5.1.5.0 + onnx_t...原创 2019-10-10 22:28:24 · 5487 阅读 · 47 评论 -
pointpillars点云算法TensorRT环境加速系列二
简述 上一篇博文撰写了关于pointpillars算法的pytorch模型如何转换为onnx模型中间件,具体参考此链接:pointpillars点云算法TensorRT环境加速系列一以此来方便TensorRT进行加载解析优化模型。接下来,我们在完成第一步模型成功从pytorch模型转换成为onnx之后,需要验证onnx模型转换之后的精度与原始的pytorch模型精度差多少。Attention...原创 2019-10-04 16:30:05 · 4827 阅读 · 4 评论 -
pointpillars点云算法TensorRT环境加速系列一
简述近两年传统视觉方式开始往3d点云上面进行学习,以此来达到现实三维空间中的目标检测。上一篇文章second.pytorch环境配置记录简单写了一下second.pytorch算法的环境配置。当然,second.pytorch代码已经集成了pointpillars算法,不过经过一些修改。我对算法原始作者代码nutonomy/second.pytorch的代码进行一定程度的修改,以此能够有效的将模...原创 2019-09-28 16:39:01 · 9982 阅读 · 36 评论 -
second.pytorch环境配置记录
简述 second.pytorch代码集成一些3d激光雷达点云的学习算法,关于这方面资料相对较少,主要是3d点云深度学习算法也是这两年才开始发力。学习资料相对单一,本文首先记录自己配置second.pytorch的nvidia-docker环境所踩过的坑,后期会分别写一写当前的3d-lidar点云的深度学习算法。这里,也推荐大家参考second.pytorch的环境配置教程。ok,让我们开始s...原创 2019-08-10 11:20:48 · 9234 阅读 · 64 评论 -
深度学习系列之理解BP网络原理
深度学习训练过程中到底学的是什么? 深度学习技术应用在语音识别、计算机视觉领域近几年突破性的进展,但是深度学习的可解释性弱,无法有效的进行理论推导。例如:困惑我这样的深度学习小白疑问:深度学习到底学习的是什么?如何进行学习?如何进行迭代进行最优学习的等等问题?本篇博文只是个人浅显的理解,与参考网上资料的一篇个人总结(大神请绕到),如有错误,还请批评指正。深度学习到底学习的是什么? 相信大...原创 2019-04-06 14:03:08 · 338 阅读 · 0 评论 -
MXNET教程Fine-Tune训练图像分类模型
1、数据源准备阶段(Data Preparation) 图像分类任务可以算是深度学习的基础也是挑战,著名的数据集包括CIFAR10、CIFAR100、MNIC、Fashion-MNIST等。那么这次使用MXNET框架进行图像分类任务学习练手尝试一下,大家也可以直接参考MXNET官方教程。进行图像分类训练之前,首先要准备你自己的分类数据集。以我学习的训练数据为例进行介绍。数据准备见下图:见上图,数...原创 2019-01-31 23:25:45 · 1077 阅读 · 0 评论 -
Yolov3训练过程笔记
本篇博客写的基于Ubuntu系统下的yolov3训练配置过程,基于windows的可以参考AlexeyAB的Github博客地址: (AlexeyAB的Github)。当然,原作者Pjreddie的网页也有ubuntu配置过程可以参考:原作者pjreddie 0 数据准备阶段 首先,你需要下载训练数据集(或者自己的数据集),以Pascal-Voc数据集格式为例:通过官网给出的voc...原创 2018-11-08 20:04:36 · 4700 阅读 · 3 评论 -
YoLo算法分析
1- Yolo算法原理1.1 简介 论文地址:https://pjreddie.com/publications/ 源码地址:https://github.com/pjreddie/darknet [文末附opencv示例yolo-v2版本示例代码] Yolo(You Only Look Once)算法将目标检测作为回归问题来进行求解,能够在单个神经网络中直接从原...原创 2019-03-13 07:58:18 · 11552 阅读 · 0 评论 -
Yolo9000算法分析
Yolo9000算法概述 现实世界通用的目标检测与识别性能要够快、够准、能够多类别的检测识别。目前主流的目标检测算法(RCNN系列)受限于少部分的目标检测识别,而且当下的目标检测数据集类别数较少,相比于图像分类数据集(ImageNet)相差较大。Yolov2(Yolo9000)针对Yolo目标检测算法进一步改进,作者提出联合训练策略:将检测和分类数据集联合来训练目标检测模型。具体方法:利用目...原创 2018-03-13 23:07:58 · 8964 阅读 · 0 评论 -
目标检测之Selective Search原理简述
目标检测物体的候选框是如何产生的? 如今深度学习火热的今天,RCNN/SPP-Net/Fast-RCNN等文章都会谈及bounding boxes(候选边界框)的生成与筛选策略。那么候选框是如何产生,又是如何进行筛选的呢?其实物体候选框获取当前主要使用图像分割与区域生长技术。区域生长(合并)主要由于检测图像中存在的物体具有局部区域相似性(颜色、纹理等)。目标识别与图像分割技术的发展进一步推动...原创 2018-03-17 20:19:10 · 17198 阅读 · 3 评论 -
Yolov3升级版
Yolov3简述代码地址:https://pjreddie.com/yolo/ 文章地址: https://pjreddie.com/media/files/papers/YOLOv3.pdf 文末附yolov3_VisualStudio2015_cpu版本的下载代码 文末附yolov3_VisualStudio2015_gpu版本的下载代码 前些天Joseph Redm...原创 2018-03-28 00:11:04 · 5399 阅读 · 0 评论 -
RCNN算法分析
RCNN算法简述 RCNN丰富特征层次的结构提取算法,由Ross Girshick 在2014年CVPR提出算法将目标检测推向新的里程碑。自从12年AlexNet在ImageNet上大放异彩之后,卷积神经网络重新引起大家的重视,同时手工设计特征方式逐渐退出舞台。RCNN是将CNN与SVM优势结合来突破目标检测的瓶颈,借助CNN强大的特征表达能力和SVM高效的分类性能。RCNN主要过程如下...原创 2018-04-02 21:51:58 · 5108 阅读 · 0 评论