Problem Description
There are n houses in the village and some bidirectional roads connecting them. Every day peole always like to ask like this "How far is it if I want to go from house A to house B"? Usually it hard to answer. But luckily int this village the answer is always unique, since the roads are built in the way that there is a unique simple path("simple" means you can't visit a place twice) between every two houses. Yout task is to answer all these curious people.
Input
First line is a single integer T(T<=10), indicating the number of test cases.
For each test case,in the first line there are two numbers n(2<=n<=40000) and m (1<=m<=200),the number of houses and the number of queries. The following n-1 lines each consisting three numbers i,j,k, separated bu a single space, meaning that there is a road connecting house i and house j,with length k(0<k<=40000).The houses are labeled from 1 to n.
Next m lines each has distinct integers i and j, you areato answer the distance between house i and house j.
For each test case,in the first line there are two numbers n(2<=n<=40000) and m (1<=m<=200),the number of houses and the number of queries. The following n-1 lines each consisting three numbers i,j,k, separated bu a single space, meaning that there is a road connecting house i and house j,with length k(0<k<=40000).The houses are labeled from 1 to n.
Next m lines each has distinct integers i and j, you areato answer the distance between house i and house j.
Output
For each test case,output m lines. Each line represents the answer of the query. Output a bland line after each test case.
Sample Input
2 3 2 1 2 10 3 1 15 1 2 2 3 2 2 1 2 100 1 2 2 1
Sample Output
10 25 100 100题意:最短路问题,Tarjan离线算法。。。AC代码:#include<cstdio> #include<string.h> #include<algorithm> #include<string> #include<iostream> #define CLR(arr,val) memset(arr,val,sizeof(arr)) #define FOR(s,t) for(int s=0;i<t;++i) #define N 40005 #define M 81000 using namespace std; typedef struct { int num; int len; int Next; }Node; Node s[M]; int head1[N],head[N],Father[N],id[N],dis[N],ans[405]; bool vis[N]; int res,cnt; void init() { CLR(head,-1); CLR(head1,-1); CLR(id,0); CLR(ans,0); CLR(vis,false); res=0,cnt=0; } int Find(int x) { if(x==Father[x]) return x; return Father[x]=Find(Father[x]); } void add(int a,int b,int c,int h[]) { s[res].num=b,s[res].len=c,s[res].Next=h[a],h[a]=res++; s[res].num=a,s[res].len=c,s[res].Next=h[b],h[b]=res++; } void Tarjan(int x) { id[x]=cnt; vis[Father[x]=x]=true; int v; for(int i=head1[x];i!=-1;i=s[i].Next) if(vis[v=s[i].num]) if(id[x]==id[v]) ans[s[i].len]=dis[x]+dis[v]-2*dis[Find(v)]; for(int i=head[x];i!=-1;i=s[i].Next) if(!vis[v=s[i].num]) dis[v]=dis[x]+s[i].len,Tarjan(v),Father[v]=x; } void in(int &a) { char ch; while((ch=getchar())<'0'||ch>'9'); for(a=0;ch>='0'&&ch<='9';ch=getchar()) a=a*10+ch-'0'; } int main() { int T; in(T); for(int k=1;k<=T;++k) { if(k>1) printf("\n"); init(); int n,m,a,b,c; in(n),in(m); FOR(i,n-1) in(a),in(b),in(c),add(a,b,c,head); FOR(i,m) in(a),in(b),add(a,b,i,head1); for(int i=1;i<=n;++i,cnt++) if(!vis[i]) dis[i]=0,Tarjan(i); FOR(i,m) printf("%d\n",ans[i]); }return 0; }