目录
算法是解决问题的方法与步骤。
时间空间复杂度
- 在评价一个算法是否优秀时,需要考虑一个算法的时间复杂度和空间复杂度。
- 现在随着空间越来越大,时间复杂度成了一个算法的重要指标
时间复杂度:算法的执行效率
- 例1:时间复杂度为O(1)(常数级别)
int fun(int n)
{
int i = n;//执行一次
int j = 3 * n;//执行一次
return i + j;
}
- 例2:时间复杂度为O(logn)
设while循环执行了x次,即2 ^ x = n,解得x = logn
int fun(int n)
{
int i = 1;//执行一次(当n很大的时候可以忽略不计)
while(i <= n)//2 ^ x = n ——> x = logn
i = i * 2;//i的值决定循环何时结束
return i;
}
- 例3:时间复杂度为O(n)
int fun(int n)
{
sum = 0;//执行一次
for(int i = 0;i < n;i++)
sum += i;//sum = 0 + 1 + 2 + ... + n - 1
return sum;
}
- 例4:时间复杂度为O(m+n)
int fun(int m,int n)
{
int sum = 0;
for(int i = 1;i <= m;i++) sum += i;//执行m次
for(int i = 2;i <= n;i++) sum += i;//执行n次
return sum;
}
- 例5:时间复杂度为O(mlogn) (与例2类似)
int fun(int m,int n)
{
int sum = 0;
for(int i = 0;i < m;i++)
{
for(int j = 0;j < n;j++)
{
sum += i * j;//sum的值对结束循环没有影响
j = j * 2;//j的值决定内层循环何时结束
}
}
return sum;
}
- 例6:时间复杂度为O(n * n)
int fun(int n)
{
int sum = 0;
for(int i = 0;i < n;i++)
{
for(int j = 0;j < n;j++)
{
sum += i * j;//sum的值对结束循环没有影响
}
}
return sum;
}
常见的时间复杂度:O(1) < O(logn) < O(n) < O(nlogn) < O(n ^ 2) < O( 2 ^ n) < O(n!)(最后两个很容易超时)
空间复杂度:算法所占内存空间
- 例1:空间复杂度为O(1)
int fun(int n)
{
int sum=0;
for(int i = 0;i < n;i++)
sum += i;//常数空间复杂度,计算机只需要开辟两个固定的空间用来存储sum和i
return sum;
}
- 例2:空间复杂度为O(N)
int fun(int n)
{
int arr[N];//决定了空间复杂度
while(i <= N)
i = i * 2;
return i;
}
- 例3:空间复杂度为O(MN)
int fun(int m,int n)
{
int arr[M][N];
for(int i = 1;i <= M;i++)
for(int j = 1;j <= N;j++)
sum += arr[i][j];
return sum;
}
常见的时间复杂度:O(1) < O(n) < O(nxn)
信息的表示和存储
原理和表示方法
计算机内部采用二进制代码(0和1)存储信息,包括文字、视频、图片… …通过下表不难发现,二进制没有2,十进制没有10,八进制没有8,十六进制没有16
二进制计算
- 110 - 1= 101(借一当二使用)
- 0001 + 0001 = 0010
- 1 + 1 = 10
十六进制计算
- 119 + 2 = 11B(9 + 2 = 11,用B替换,不需要进位)
- 1A2 - 13 = 18F(借一当十六使用,2借1其实是2 + 16 = 18,18 - 3 = 15,即F)
正整数的二进制、十进制、十六进制的转换
十进制数转换为N进制数
【除基(N)取余、逆序输出】
-
例1:将十进制整数11转化为二进制,11 ——> 1011
-
例2:将十进制整数11转化为八进制,11 ——> 13
-
例2:将十进制整数11转化为十六进制,11 ——> B
N进制数转换为十进制数
【按权展开、逐项相加】
-
例1:将二进制整数1101转化为十进制
1101 ——> (1 x 2 ^ 0) + (0 x 2 ^ 1) + (1 x 2 ^ 2) + (1 x 2 ^ 3) = 1 + 0 + 4 + 8 = 13 -
例2:将八进制整数501转化为十进制
501 ——> (1 x 8 ^ 0) + (0 x 8 ^ 1) + (5 x 8 ^ 2) = 1 + 0 + 320 = 321
小数中的进制转换
十进制小数转换为N进制数【小数部分乘以N,取整数部分直至小数点后为0】
- 例1:(0.125)10 = (0.001)2
- 例2:(0.125)10 = (0.02)4
N进制小数数转换为十进制数【位权展开,逐项相加】
(0.101)2 = 1 x 2 ^ (-1) + 0 x 2 ^ (-2) + 1 x 2 ^ (-3)
= 1/2 + 1/8 = (0.625)10
计算机中整数的表示方法
- 有符号数
分为原码、反码、补码
① 最高位表正负,0表正,1表负
② 对于正数,原码 = 反码 = 补码
③ 对于负数,反码 = 将原码的各位取反(符号位除外);补码等于反码加1
例1: 若一个负数的原码是100011,则其反码是111100,补码是111101
例2:一个数的原码是11000101,其对应的反码是10111010补码是10111011
练习
编程实现将十进制数n转换为二进制数
#include <iostream>
using namespace std;
int a[32];//原来存储余数
int main()
{
int n,i = 0;
cin >> n;
while (n > 0)
{
a[i++] = n % 2;
n /= 2;
}
for (int j = i - 1;j >= 0;j--) cout << a[j];
return 0;
}
秦九韶算法
- 在计算机内部,乘法的计算往往比较复杂,耗时也比执行加法计算更长,因此减少执行乘法的次数可以优化代码的时间复杂度。
- 利用秦九韶算法求一元n次多项式的时间复杂度为O(n)
例如,对于下面的一元五次多项式,如果利用传统的方法计算f(4)的值,需要计算4 ^ 5, 4 ^ 4,4 ^ 3,4 ^ 2,4 ^ 1,即执行1+2+3+4+5次乘法,对于一元n次多项式,需要执行(1+2+3+4+5+6+7+… …+n) = (1+n)n/2次乘法,时间复杂度为O(nxn)
但是,如果先利用秦九韶算法对一元n次多项式进行如下化简
显然,如果此时再计算f(4),则只需要进行5次乘法即可。时间复杂度从O(nxn)优化至O(n),大大的节省了时间,提高了算法的效率。
秦九韶算法:对于一个n次多项式,至多需要做n次乘法和n次加法
利用秦九韶算法可以实现非十进制数转换为十进制。如:二进制10111转换为十进制,核心代码:
ans = s[0];//s[0]保存最高项系数
for(i=1;i<=n;i++) ans = ans * x + s[i] - '0';//n表示二进制数有几位