杭电LCY-ACM算法入门习题(01-04)

本文介绍了两道编程题目,分别是利用快速幂模板解决求幂运算最后三位数的问题和解四次方程的算法。第一题中,通过快速幂优化了求幂运算的时间复杂度,实现了在大数范围内的高效计算。第二题则是在固定范围内寻找方程的解,使用了二分查找或者其他数值计算方法。两题均涉及数值计算和算法设计策略。
摘要由CSDN通过智能技术生成
人见人爱A^B(HDU 2035)

Problem Description

求A ^ B的最后三位数表示的整数。 说明:A^B的含义是“A的B次方”

Input

输入数据包含多个测试实例,每个实例占一行,由两个正整数A和B组成(1<=A,B<=10000),如果A=0,B=0,则表示输入数据的结束,不做处理。

Output

对于每个测试实例,请输出A^B的最后三位表示的整数,每个输出占一行。

Sample Input

2 3
12 6
6789 10000
0 0

Sample Output

8
984
1

解题思路:快速幂模板题
AC代码

#include <iostream>

using namespace std;

int quick_power(int a,int n)
{
    int ans = 1;
    while (n)
    {
        if (n % 2) ans = ans * a % 1000;//指数是奇数
        a = a * a % 1000;//底数平方(数据范围大,一般在乘法的地方取模)
        n >>= 1;//指数减半
    }
    return ans;
}

int main()
{
    int a,b;
    while (cin >> a >> b)
    {
        if (a == 0 && b == 0) break;
        
        int res = quick_power(a,b);
        cout << res << endl;
    }
    return 0;
}
解方程(HDU 2899)

Problem Description

给定方程 8x ^ 4 + 7x ^ 3 + 2x^2 + 3x + 6 == Y,请计算x在[0,100]范围内的解。

Input

输入数据首先是一个正整数T(1<=T<=100),表示有T组测试数据。接下来T行,每行包含一个实数Y ( fabs(Y) <= 1e10)。

Output

请计算并输出方程在范围[0,100]内的解,结果精确到小数点后4位。如果无解,则请输出“No solution!”

Sample Input

2
100
-4

Sample Output

1.6152
No solution!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值