机器学习算法(一):2. 线性回归之多项式回归(特征选取)

系列文章目录

机器学习算法(一):1. numpy从零实现线性回归
机器学习算法(一):2. 线性回归之多项式回归(特征选取)



前言

本博客主要是将线性回归推广到多项式线性回归,主要实现手段就是进行特征选择来实现多项式线性回归。


一、特征选取(特征构建)

这里说特征选取有点大了,说特征构建吧!看下面例子

这是一个二次函数,可以看到用简单的线性回归拟合效果永远无法实现拟合曲线的效果。要达到这种拟合曲线的情况就要用多项式回归了,其本质还是线性回归。我们主要对特征做一些手脚就可以实现这种效果了。上图中只有一个特征 x x x,我们进行特征组合,加入一个新的特征 x 2 x^2 x2,记 x 1 = x , x 2 = x 2 x_1 = x , x_2 = x^2 x1=x,x2=x2,这样模型就变成了:
y = w 1 x + w 2 x 2 = w 1 x 1 + w 2 x 2 \begin{align} y&=w_1x+w_2x^2 \\ &=w_1x_1+w_2x_2 \end{align}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值