系列文章目录
机器学习算法(一):1. numpy从零实现线性回归
机器学习算法(一):2. 线性回归之多项式回归(特征选取)
前言
本博客主要是将线性回归推广到多项式线性回归,主要实现手段就是进行特征选择来实现多项式线性回归。
一、特征选取(特征构建)
这里说特征选取有点大了,说特征构建吧!看下面例子
这是一个二次函数,可以看到用简单的线性回归拟合效果永远无法实现拟合曲线的效果。要达到这种拟合曲线的情况就要用多项式回归了,其本质还是线性回归。我们主要对特征做一些手脚就可以实现这种效果了。上图中只有一个特征 x x x,我们进行特征组合,加入一个新的特征 x 2 x^2 x2,记 x 1 = x , x 2 = x 2 x_1 = x , x_2 = x^2 x1=x,x2=x2,这样模型就变成了:
y = w 1 x + w 2 x 2 = w 1 x 1 + w 2 x 2 \begin{align} y&=w_1x+w_2x^2 \\ &=w_1x_1+w_2x_2 \end{align}