4-pytorch前馈网络简单(分类)问题搭建、torch.max()函数、F.softmax()函数

本博客通过PyTorch构建一个包含输入层(2节点)、隐藏层(10节点)和输出层(2节点)的分类网络。介绍了F.softmax()函数和tensor.max()函数在分类问题中的应用,详细讲解了网络的搭建、训练过程和分类结果的打印。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


前言

本博客会搭建输入层(2节点),隐藏层(10节点),输出层(2节点)
分类问题在我看来可比回归问题复杂多了,在搭建网络前,需要先介绍几个在分类问题里面的常用函数,了解了这几个函数的用法看网络搭建代码才会轻松点。
网络示意图:
待更新---画张自己的图可太难了啊!开个玩笑,画好会尽快发布上来的,忘了记得提醒我,嘿嘿嘿

一、分类的前置知识

1 F.softmax()函数

F.softmax() 函数是PyTorch中的一个函数,用于执行 softmax 操作。
softmax 是一种常用的归一化函数,它能够将一组任意实数转换成一个概率分布。

  • softmax 函数的定义如下:给定一个含有 n 个实数的向量 z = ( z 1 , z 2 , . . . , z n ) \mathbf{z} = (z_1, z_2, ..., z_n) z=(z1,z2,...,zn),softmax 函数的定义如下:
    softmax ( z i ) = e z i ∑ j = 1 n e z j \text{softmax}(\mathbf{z_i}) = \frac{e^{z_i}}{\sum_{j=1}^{n} e^{z_j}} softmax(zi)=j=1nezjez
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值