提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档
前言
本文内容还是基于4-pytorch前馈网络简单(分类)问题搭建这篇的相同例子,只是为了介绍另一种更加快速搭建网络的方法,看个人喜好用哪一种。
【注】:建议先看完上面链接的博客4,在来看本篇。
这里的这种搭建方法是使用**torch.nn.Sequential()**快速搭建,不用我们在继承重写net类了。
torch.nn.Sequential()快速搭建网络法
1 生成数据
import torch
import torch.nn.functional as F
import matplotlib.pyplot as plt
import numpy as np
n_data = torch.ones(100,2)
x0 = torch.normal(2*n_data,1)
y0 = torch.zeros(100,1)
x1 = torch.normal(-2*n_data,1)
y1 = torch.ones(100,1)
x = torch.cat((x0,x1),0)
# 在分类问题中标签必须用一维tensor,回归中则没有这个要求
y = torch.cat((y0,y1),0).reshape(-1)
# 在分类问题中标签还需要用torch.LongTensor类型
# 将张量 y 的类型转换为 long,这是因为在 PyTorch 中,分类问题的标签通常是整数类型(long),以便与模型输出的类别概率进行比较