python导入自定义模块和包

来自(https://www.cnblogs.com/telazy/p/8967515.html

python模块

Python 模块(Module),是一个 Python 文件,以 .py 结尾,包含了 Python 对象定义和Python语句。

模块让你能够有逻辑地组织你的 Python 代码段。

把相关的代码分配到一个模块里能让你的代码更好用,更易懂。

模块能定义函数,类和变量,模块里也能包含可执行的代码。

python包

包是一个分层次的文件目录结构,它定义了一个由模块及子包,和子包下的子包等组成的 Python 的应用环境。

简单来说,包就是文件夹,但该文件夹下必须存在 __init__.py 文件, 该文件的内容可以为空。__init__.py 用于标识当前文件夹是一个包。

场景应用

导入同级目录文件

如果需要引入同级目录下的文件,则可以采用import一个模块的形式,即可调用。

考虑同一目录下的两个python文件,test.py 需要调用support.py 中的函数,目录结构如下:

|-- test.py
|-- support.py

support.py 中的代码如下:

 

def print_func( par ):
   print "Hello : ", par
   return

test.py 调用的代码如下:

#!/usr/bin/python
# -*- coding: UTF-8 -*-
 
# 导入模块
import support
 
# 现在可以调用模块里包含的函数了
support.print_func("Runoob")

 

导入子目录文件

如果需要引入子目录下的文件,则可以采用import一个包的形式,将子目录封装成包,即可调用。

考虑一个在 package_runoob 目录下的 runoob1.py、runoob2.py、__init__.py 文件,test.py 为测试调用包的代码,目录结构如下:

test.py
package_runoob
|-- __init__.py
|-- runoob1.py
|-- runoob2.py

__init__.py可以是空文件。

test.py 调用代码如下:

#!/usr/bin/python
# -*- coding: UTF-8 -*-
 
# 导入 Phone 包
from package_runoob.runoob1 import runoob1
from package_runoob.runoob2 import runoob2
 
runoob1()
runoob2()

也可以采用:

#!/usr/bin/python
# -*- coding: UTF-8 -*-
 
# 导入 Phone 包
import package_runoob.runoob1
import package_runoob.runoob2
 
package_runoob.runoob1.runoob1()
package_runoob.runoob2.runoob2()

 

解决“Python找不到指定模块”的方法有 3 种,分别是:

来自(http://c.biancheng.net/view/4645.html)

  1. 向 sys.path 中临时添加模块文件存储位置的完整路径;
  2. 将模块放在 sys.path 变量中已包含的模块加载路径中;
  3. 设置 path 系统环境变量

在详细介绍这 3 种方式之前,为了能更方便地讲解,本节使用前面章节已建立好的 hello.py 自定义模块文件(D:\python_module\hello.py)和 say.py 程序文件(C:\Users\mengma\Desktop\say.py,位于桌面上),它们各自包含的代码如下:

#hello.py
def say ():
print("Hello,World!")

 

#say.py
import hello
hello.say()

显然,hello.py 文件和 say.py 文件并不在同一目录,此时运行 say.py 文件,其运行结果为:

 Traceback (most recent call last):
  File "C:\Users\mengma\Desktop\say.py", line 1, in <module>
    import hello
ModuleNotFoundError: No module named 'hello'

可以看到,Python 解释器抛出了 ModuleNotFoundError 异常。接下来,分别用以上 3 种方法解决这个问题。

导入模块方式一:临时添加模块完整路径

模块文件的存储位置,可以临时添加到 sys.path 变量中,即向 sys.path 中添加 D:\python_module(hello.py 所在目录),在 say.py 中的开头位置添加如下代码:

import sys
sys.path.append('D:\\python_module')

注意:在添加完整路径中,路径中的 '\' 需要使用 \ 进行转义,否则会导致语法错误。再次运行 say.py 文件,运行结果如下:

Hello,World!

可以看到,程序成功运行。在此基础上,我们在 say.py 文件中输出 sys.path 变量的值,会得到以下结果:

['C:\\Users\\mengma\\Desktop', 'D:\\python3.6\\Lib\\idlelib', 'D:\\python3.6\\python36.zip', 'D:\\python3.6\\DLLs', 'D:\\python3.6\\lib', 'D:\\python3.6', 'C:\\Users\\mengma\\AppData\\Roaming\\Python\\Python36\\site-packages', 'D:\\python3.6\\lib\\site-packages', 'D:\\python3.6\\lib\\site-packages\\win32', 'D:\\python3.6\\lib\\site-packages\\win32\\lib', 'D:\\python3.6\\lib\\site-packages\\Pythonwin', 'D:\\python_module']

该输出信息中,红色部分就是临时添加进去的存储路径。需要注意的是,通过该方法添加的目录,只能在执行当前文件的窗口中有效,窗口关闭后即失效。

 

导入模块方式二:将模块保存到指定位置

如果要安装某些通用性模块,比如复数功能支持的模块、矩阵计算支持的模块、图形界面支持的模块等,这些都属于对 Python 本身进行扩展的模块,这种模块应该直接安装在 Python 内部,以便被所有程序共享,此时就可借助于 Python 默认的模块加载路径。

Python 程序默认的模块加载路径保存在 sys.path 变量中,因此,我们可以在 say.py 程序文件中先看看 sys.path 中保存的默认加载路径,向 say.py 文件中输出 sys.path 的值,如下所示:

['C:\\Users\\mengma\\Desktop', 'D:\\python3.6\\Lib\\idlelib', 'D:\\python3.6\\python36.zip', 'D:\\python3.6\\DLLs', 'D:\\python3.6\\lib', 'D:\\python3.6', 'C:\\Users\\mengma\\AppData\\Roaming\\Python\\Python36\\site-packages', 'D:\\python3.6\\lib\\site-packages', 'D:\\python3.6\\lib\\site-packages\\win32', 'D:\\python3.6\\lib\\site-packages\\win32\\lib', 'D:\\python3.6\\lib\\site-packages\\Pythonwin']

上面的运行结果中,列出的所有路径都是 Python 默认的模块加载路径,但通常来说,我们默认将 Python 的扩展模块添加在 lib\site-packages 路径下,它专门用于存放 Python 的扩展模块和包。

所以,我们可以直接将我们已编写好的 hello.py 文件添加到  lib\site-packages 路径下,就相当于为 Python 扩展了一个 hello 模块,这样任何 Python 程序都可使用该模块。

移动工作完成之后,再次运行 say.py 文件,可以看到成功运行的结果:

Hello,World!

 

导入模块方式三:设置环境变量

PYTHONPATH 环境变量(简称 path 变量)的值是很多路径组成的集合,Python 解释器会按照 path 包含的路径进行一次搜索,直到找到指定要加载的模块。当然,如果最终依旧没有找到,则 Python 就报 ModuleNotFoundError 异常。

由于不同平台,设置 path 环境变量的设置流程不尽相同,因此接下来就使用最多的 Windows、Linux、Mac OS X 这 3 个平台,给读者介绍如何设置 path 环境变量。

在 Windows 平台上设置环境变量

首先,找到桌面上的“计算机”(或者我的电脑),并点击鼠标右键,单击“属性”。此时会显示“控制面板\所有控制面板项\系统”窗口,单击该窗口左边栏中的“高级系统设置”菜单,出现“系统属性”对话框,如图 1 所示。



图 1 系统属性对话框


如图 1 所示,点击“环境变量”按钮,此时将弹出图 2 所示的对话框:



图 2 环境变量对话框


如图 2 所示,通过该对话框,就可以完成 path 环境变量的设置。需要注意的是,该对话框分为上下 2 部分,其中上面的“用户变量”部分用于设置当前用户的环境变量,下面的“系统变量”部分用于设置整个系统的环境变量。

通常情况下,建议大家设置设置用户的 path 变量即可,因为此设置仅对当前登陆系统的用户有效,而如果修改系统的 path 变量,则对所有用户有效。

对于普通用户来说,设置用户 path 变量和系统 path 变量的效果是相同的,但 Python 在使用 path 变量时,会先按照系统 path 变量的路径去查找,然后再按照用户 path 变量的路径去查找。

这里我们选择设置当前用户的 path 变量。单击用户变量中的“新建”按钮, 系统会弹出如图 3 所示的对话框。



图 3 新建PYTHONPATH环境变量


其中,在“变量名”文本框内输入 PYTHONPATH,表明将要建立名为 PYTHONPATH 的环境变量;在“变量值”文本框内输入 .;d:\python_ module。注意,这里其实包含了两条路径(以分号 ;作为分隔符):

  • 第一条路径为一个点(.),表示当前路径,当运行 Python 程序时,Python 将可以从当前路径加载模块;
  • 第二条路径为 d:\python_ module,当运行 Python 程序时,Python 将可以从 d:\python_ module 中加载模块。


然后点击“确定”,即成功设置 path 环境变量。此时,我们只需要将模块文件移动到和引入该模块的文件相同的目录,或者移动到 d:\python_ module 路径下,该模块就能被成功加载。

在 Linux 上设置环境变量

启动 Linux 的终端窗口,进入当前用户的 home 路径下,然后在 home 路径下输入如下命令:

ls - a

该命令将列出当前路径下所有的文件,包括隐藏文件。Linux 平台的环境变量是通过 .bash_profile 文件来设置的,使用无格式编辑器打开该文件,在该文件中添加 PYTHONPATH 环境变量。也就是为该文件增加如下一行:

#设置PYTHON PATH 环境变量
PYTHONPATH=.:/home/mengma/python_module

Linux 与 Windows 平台不一样,多个路径之间以冒号(:)作为分隔符,因此上面一行同样设置了两条路径,点(.)代表当前路径,还有一条路径是 /home/mengma/python_module(mengma 是在 Linux 系统的登录名)。

在完成了 PYTHONPATH 变量值的设置后,在 .bash_profile 文件的最后添加导出 PYTHONPATH 变量的语句。

#导出PYTHONPATH 环境变量
export PYTHONPATH

重新登录 Linux 平台,或者执行如下命令:

source.bash_profile

这两种方式都是为了运行该文件,使在文件中设置的 PYTHONPATH 变量值生效。

在成功设置了上面的环境变量之后,接下来只要把前面定义的模块(Python 程序)放在与当前所运行 Python 程序相同的路径中(或放在 /home/mengma/python_module 路径下),该模块就能被成功加载了。

在Mac OS X 上设置环境变量

在 Mac OS X 上设置环境变量与 Linux 大致相同(因为 Mac OS X 本身也是类 UNIX 系统)。启动 Mac OS X 的终端窗口(命令行界面),进入当前用户的 home 路径下,然后在 home 路径下输入如下命令:

ls -a

该命令将列出当前路径下所有的文件,包括隐藏文件。Mac OS X 平台的环境变量也可通过,bash_profile 文件来设置,使用无格式编辑器打开该文件,在该文件中添加 PYTHONPATH 环境变量。也就是为该文件增加如下一行:

#设置PYTHON PATH 环境变盘
PYTHONPATH=.:/Users/mengma/python_module

Mac OS X 的多个路径之间同样以冒号(:)作为分隔符,因此上面一行同样设置了两条路径:点(.)代表当前路径,还有一条路径是 /Users/mengma/python_module(memgma 是作者在 Mac OS X 系统的登录名)。

在完成了 PYTHONPATH 变量值的设置后,在 .bash_profile 文件的最后添加导出 PYTHONPATH 变量的语句。

#导出PYTHON PATH 环境变量
export PYTHONPATH

重新登录 Mac OS X 系统,或者执行如下命令:

source.bash_profile

这两种方式都是为了运行该文件,使在文件中设置的 PYTHONPATH 变量值生效。

在成功设置了上面的环境变量之后,接下来只要把前面定义的模块(Python 程序)放在与当前所运行 Python 程序相同的路径中(或放在 Users/mengma/python_module 路径下),该模块就能被成功加载了。

展开阅读全文

150讲轻松搞定Python网络爬虫

05-16
【为什么学爬虫?】        1、爬虫入手容易,但是深入较难,如何写出高效率的爬虫,如何写出灵活性高可扩展的爬虫都是一项技术活。另外在爬虫过程中,经常容易遇到被反爬虫,比如字体反爬、IP识别、验证码等,如何层层攻克难点拿到想要的数据,这门课程,你都能学到!        2、如果是作为一个其他行业的开发者,比如app开发,web开发,学习爬虫能让你加强对技术的认知,能够开发出更加安全的软件和网站 【课程设计】 一个完整的爬虫程序,无论大小,总体来说可以分成三个步骤,分别是: 网络请求:模拟浏览器的行为从网上抓取数据。 数据解析:将请求下来的数据进行过滤,提取我们想要的数据。 数据存储:将提取到的数据存储到硬盘或者内存中。比如用mysql数据库或者redis等。 那么本课程也是按照这几个步骤循序渐进的进行讲解,带领学生完整的掌握每个步骤的技术。另外,因为爬虫的多样性,在爬取的过程中可能会发生被反爬、效率低下等。因此我们又增加了两个章节用来提高爬虫程序的灵活性,分别是: 爬虫进阶:括IP代理,多线程爬虫,图形验证码识别、JS加密解密、动态网页爬虫、字体反爬识别等。 Scrapy和分布式爬虫:Scrapy框架、Scrapy-redis组件、分布式爬虫等。 通过爬虫进阶的知识点我们能应付大量的反爬网站,而Scrapy框架作为一个专业的爬虫框架,使用他可以快速提高我们编写爬虫程序的效率和速度。另外如果一台机器不能满足你的需求,我们可以用分布式爬虫让多台机器帮助你快速爬取数据。   从基础爬虫到商业化应用爬虫,本套课程满足您的所有需求! 【课程服务】 专属付费社群+每周三讨论会+1v1答疑
©️2020 CSDN 皮肤主题: 大白 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值