前言
这是六月集训的第十七日,今日的训练内容是 广度优先搜索
解题报告
1.力扣2059
原题链接
题目概述
给你一个下标从 0 开始的整数数组 nums ,该数组由 互不相同 的数字组成。另给你两个整数 start 和 goal 。
整数 x 的值最开始设为 start ,你打算执行一些运算使 x 转化为 goal 。你可以对数字 x 重复执行下述运算:
如果 0 <= x <= 1000 ,那么,对于数组中的任一下标 i(0 <= i < nums.length),可以将 x 设为下述任一值:
x + nums[i]
x - nums[i]
x ^ nums[i](按位异或 XOR)
注意,你可以按任意顺序使用每个 nums[i] 任意次。使 x 越过 0 <= x <= 1000 范围的运算同样可以生效,但该该运算执行后将不能执行其他运算。返回将 x = start 转化为 goal 的最小操作数;如果无法完成转化,则返回 -1 。
解题思路
这题的BFS是需要借助访问数组的,因为会出现死循环的情况。然后直接BFS就可以了(使用一个队列来辅助)。
源码剖析
#define MAX_NUM 10000
int minimumOperations(int* nums, int numsSize, int start, int goal){
int *que = (int *)malloc(sizeof(int) * MAX_NUM); //定义一个队列用于BFS
int *visit = (int *)malloc(sizeof(int) * MAX_NUM); //这题有可能会出现死循环,所以需要标记一下访问过的结点
memset(visit, 0, sizeof(int) * MAX_NUM);
int l = 0;
int r = 0;
que[r++] = start;
visit[start] = 1;
int level = 0;
while (l < r) {
level++;
int len = r - l;
while (len--) {
int cur = que[l++];
for (int i = 0; i < numsSize; i++) {
int sum = cur + nums[i];
int minus = cur - nums[i];
int odd = cur ^ nums[i];
if (sum == goal || minus == goal || odd == goal) return level;
if (sum >= 0 && sum <= 1000 && visit[sum] != 1) {
que[r++] = sum;
visit[sum] = 1;
}
if (minus >= 0 && minus <= 1000 && visit[minus] != 1) {
que[r++] = minus;
visit[minus] = 1;
}
if (odd >= 0 && odd <= 1000 && visit[odd] != 1) {
que[r++] = odd;
visit[odd] = 1;
}
}
}
}
return -1;
}
2.力扣690
原题链接
题目概述
这题只可以用c++写,不可以用c写,所以就只能先记录一下了。
3.力扣672
原题链接
题目概述
现有一个房间,墙上挂有 n 只已经打开的灯泡和 4 个按钮。在进行了 m 次未知操作后,你需要返回这 n 只灯泡可能有多少种不同的状态。
假设这 n 只灯泡被编号为 [1, 2, 3 …, n],这 4 个按钮的功能如下:
将所有灯泡的状态反转(即开变为关,关变为开)
将编号为偶数的灯泡的状态反转
将编号为奇数的灯泡的状态反转
将编号为 3k+1 的灯泡的状态反转(k = 0, 1, 2, …)
解题思路
没太想明白怎么用BFS来实现,先做记录。