《七月集训》第二十八日——动态规划

前言

这是七月集训的第二十八日,今日的训练内容是 动态规划

解题报告

先来写一下自己可以写得出来的题目,另外几天的题目只能先记录记录去学习一下了。

1.力扣53

原题链接

53. 最大子数组和

题目概述

给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

子数组 是数组中的一个连续部分。

解题思路

一道经典的动态规划问题,那么就可以分为接下来的几个流程来进行解题了:设计状态->写出状态转移方程->设定初始状态->执行状态转移->返回最终解
那么此题可以将当前位置的数字可以组成的最大和作为状态,每一个元素如果当前位置可以出现的最大和就只包括了两种情况:

  1. 前一项的最大和加上当前这个数字得到了当前位置的最大和
  2. 当前数字不加上前一项的最大和得到当前位置的最大和

我们由此便得到了状态转移方程 s[i] = max{s[i-1]+num[i],num[i]};

初始状态就令s[0] = num[0];

源码剖析

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        vector<int> s;
        s.push_back(nums[0]);
        int ans = nums[0];
        for(int i = 1;i<nums.size();++i){
            s.push_back(max(s[i-1]+nums[i],nums[i]));
            ans = max(ans,s[i]);
        }
        return ans;
    }
};

直接这样写可以占用到72mb的内存,不论是执行速度还是内存占用都相当差劲。因此对其进行改良。

仔细观察之后其实我们可以发现,s[i]只和当前项num[i]和s[i-1]有关,因此我们其实只需要使用一个变量记录下前一项的s[i-1]就可以了。如下:

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int ans = nums[0];
        int pre = nums[0];
        for(int i = 1;i<nums.size();++i){
            pre = max(pre+nums[i],nums[i]);
            ans = max(ans,pre);
        }
        return ans;
    }
};

优化过后速度和内存都提升了一些,内存占用为66mb左右。

  • 1
    点赞
  • 1
    收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:游动-白 设计师:我叫白小胖 返回首页
评论 1

打赏作者

野生的小小风256

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值