推荐系统在直播场景的应用(花椒直播)

记录一次讲座笔记,讲课的是花椒直播的改机算法架构工程师,王洋;王洋浙大+新加坡南洋理工大学,通信系统专业

推荐系统:帮助用户发现内容,克服信息过载
通过分析用户行为,对用户兴趣建模,预测用户的兴趣
在这里插入图片描述
早期,基于热度推荐:热度高的一般质量有保证,但是集中在头部,难以千人千面

现代化推荐系统
全样本,生成粗排序(百万量级),再生成精致排序(几百个量级),在推荐给用户(10量级)
在这里插入图片描述
所以分两步分别是:
召回与排序。

在这里插入图片描述

召回

在这里插入图片描述

基于邻域的协同过滤

1计算用户与物品的相似度矩阵
2计算出用户对缺失物品的得分
将得分高的部分推荐给用户,就可以得知该用户没看过的物品里哪个更可能喜欢了
在这里插入图片描述
在这里插入图片描述
具体举例:
在这里插入图片描述
早期使用:基于主播的协同过滤
由于是n方,用户的话会维度爆炸
原因:
1主播维度小,计算少
2根据用户的历史行为推荐,可解释性强
3新用户看一个主播即可开始推荐其他
总结
1是基于统计的方法,不是优化学习的方法
2只使用局部数据进行推荐,更像是策略
3用户和物品维度大时对内存需求较大
在这里插入图片描述

基于隐向量的协同过滤

在这里插入图片描述
在这里插入图片描述

矩阵分解
显式反馈:打分,评分
隐式反馈:交互频率;点击观看等,评分矩阵一般是01形式

显式反馈常用方法:

用两个小矩阵相乘,拟合出大矩阵
在这里插入图片描述

隐式反馈常用方法:

交互程度r , 如观看时间大于10s
x,y是两个小矩阵
c表示置信度正比于反馈程度
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
n方级别编程nk级别
可解释性差,未用到其他特征,不够全面
在这里插入图片描述
在这里插入图片描述

基于深度学习的矩阵分解

在这里插入图片描述
内积可以用DNN学习
NCF网络 Neural collaborative Filtering
在这里插入图片描述
NeuMF
在这里插入图片描述
在这里插入图片描述
链接地址为:
https://mp.weixin.qq.com/s/ERfIcCJ7ne4OjfRStdR_vw

其他召回模型

Youtube召回模型
使用了较复杂的信息
在这里插入图片描述
线上用户隐向量实时计算;物品隐向量离线存好
二者相乘
在这里插入图片描述

排序(精排)

在这里插入图片描述

在这里插入图片描述

特征工程

在这里插入图片描述
直播不同于物品的推荐,直播是连续行为,有实时特征(比如游戏直播,有五杀时情况与平时不同;是否在跳舞等)

训练集的生成

在这里插入图片描述
蓝色部分;使用之前数据组成用户画像

排序模型

  1. LR
  2. FM/FFM
  3. GBDT+LR
LR逻辑回归

线性回归
人工特征交叉成本高(需要先验知识)
在这里插入图片描述
在这里插入图片描述

FM因式分解机

(自动进行特征交叉)
使用Vi Vj内积模拟特征交叉
在这里插入图片描述
但是只能进行二阶特征交叉

GBDT+LR

在这里插入图片描述
GBDT以天的时间级别更新
LR部分实时更新

深度学习排序

在这里插入图片描述

Wide&Deep类模型
  1. DNN
    学习特征间的潜在关系(全连接层),有泛化能力
    在这里插入图片描述
  2. LR+DNN
    在这里插入图片描述

下图左边是LR 右边是DNN
在这里插入图片描述
在这里插入图片描述
DIN深度兴趣网络
在这里插入图片描述
在这里插入图片描述

多任务学习的模型

业界主流模型之一
可优化的目标包括:点击、观看、送礼、关乎、转发等
宗旨:平衡不同目标的相互影响,做到全局最优(不要出现某个目标特别占主导)
ESMM模型
把样本空间分为三个部分
曝光;点击;转化三个层次
是共享底层卷积的(但是共享部分可能有问题,如多任务相关性比较低)
在这里插入图片描述

在这里插入图片描述
改进:
MMOE 不同的任务使用不同的底层网络(使用门)减轻不同任务干扰
在这里插入图片描述
在这里插入图片描述
链接地址为:
https://mp.weixin.qq.com/s/e6Spp7smIEUUExJxHzUOFA

直播内容的理解与识别
把直播中最核心,最精彩的部分挖掘出来推荐给用户
在这里插入图片描述
直播实时性特征
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值