基于主动轮廓的指尖跟踪用于通用人机交互应用
1. 引言
近年来,手势识别成为热门研究领域,它为实现更自然的人机交互提供了可能。许多实时手势识别系统借助手部运动轨迹来识别指令,但精准识别指令的关键在于准确获取指尖位置。
以往的指尖跟踪方法存在诸多不足。基于轮廓的二维指尖跟踪方法难以实现鲁棒跟踪,且通常仅适用于伸展的指尖;使用手指运动学模型的跟踪系统虽能稳定工作,但计算成本过高;利用立体视觉分析三维指尖位置时,当指尖弯曲到手掌或相互重叠,跟踪容易失败。
为解决这些问题,本文提出一种基于Kinect深度图像的系统。该系统先从深度图像中分割出手部区域,检测初始手部特征,再利用主动轮廓概念跟踪三维指尖,其能量由连续性、曲率、深度和距离等特征决定。此外,还开发了基于指尖跟踪结果的人机交互应用。
2. 初始手部分割
2.1 手部分割
前期研究中提出的基于目标检测的手部检测器,能较准确地搜索图像中的手部区域。但当脸部、手臂等身体部位靠近手部时,该检测器会失效。
为解决这一问题,系统引入深度图像。深度图像通过Kinect相机获取,是一个三维位置向量 (x, y, z),其中x和y表示图像的行和列,z表示像素到相机的距离。通过设置手部检测器的初始深度值,可去除手部后方的物体,从而准确提取手部区域。提取手部区域后,可进一步估计手部的初始特征,如手部中心、指尖位置、手掌大小等,这些特征将作为手势识别系统中比较手势变化的参考值。
2.2 手部中心点
手部区域的中心点可通过手部区域像素的矩轻松计算得出,计算公式如下:
[X_c = \frac{M_{10}}{M_{0
超级会员免费看
订阅专栏 解锁全文
7274

被折叠的 条评论
为什么被折叠?



