
交通大数据
文章平均质量分 92
主要针对交通场景下与大数据的结合
山科智能信息处理实验室
该博客旨在记录智能处理实验室一系列学术成果,以及实验室的点点滴滴。
如果有博客中提到的论文或代码需求,烦请联系邮箱jlzhao@sdust.edu.cn
展开
-
BasicTS:全面基准测试与异质性分析
这篇论文对多元时间序列预测领域的研究具有重要意义,BasicTS+基准测试和数据集异质性分析为该领域的研究提供了新的思路和方法。希望感兴趣的读者深入阅读论文原文,获取更多详细信息,共同推动多元时间序列预测领域的发展。原创 2025-04-13 20:16:04 · 1010 阅读 · 0 评论 -
TimeMixer:用于时间序列预测的可分解多尺度混合模型
在时间序列预测领域,准确捕捉复杂的时间变化是关键挑战。本文介绍的“TimeMixer: Decomposable Multiscale Mixing for Time Series Forecasting”提出了创新的TimeMixer模型,在长短期预测任务中均展现卓越性能。原创 2025-03-10 16:34:20 · 1368 阅读 · 0 评论 -
交通大模型与时序大模型整理【共15篇工作】【附开源代码】
通过本文的阐述,我们希望能够为研究人员、决策者和城市规划者提供一些有益的参考,促进交通领域数据整理与分析工作的进一步发展与应用。原创 2024-04-16 15:41:12 · 7516 阅读 · 0 评论 -
【2022综述】人工智能交通预测技术:最新发展与未来机遇【附思维导图】
论文标题:《Traffic prediction using artificial intelligence: Review of recent advances and emerging opportunities》作者:Maryam Shaygan, Collin Meese, Wanxin Li, Xiaoliang (George) Zhao, Mark Nejad期刊:Transportation Research Part C: Emerging Technologies转载 2023-04-18 15:00:23 · 3914 阅读 · 0 评论 -
基于Transformer的交通预测模型部分汇总【附源代码】
交通预测一直是一个重要的问题,它涉及到交通运输系统的可靠性和效率。随着人工智能的发展,越来越多的研究者开始使用深度学习模型来解决这个问题。其中,基于Transformer的交通预测模型在近年来备受关注,因为它们具有优秀的建模能力和较好的预测准确性。原创 2023-03-14 17:56:22 · 12593 阅读 · 4 评论 -
ChatGPT与智能交通
ChatGPT全名为Chat Generative Pre-trained Transformer,是美国OpenAI研发的聊天机器人程序,于2022年11月30日发布。ChatGPT是人工智能技术驱动的自然语言处理工具,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,真正像人类一样来聊天交流,甚至能完成撰写邮件、视频脚本、文案、翻译、代码,写论文等任务。转载 2023-03-01 13:28:19 · 1564 阅读 · 0 评论 -
交通系统速度预测综述:从车辆到交通【公共交通数据集】【开源模型整理】
本篇综述将交通系统中的速度预测按规模分为三类:交通速度预测(宏观)、车速预测(微观)和车道级速度预测(中观),探讨了速度预测在不同层次上的异同,以促进对速度预测的全面理解。原创 2022-09-21 11:41:45 · 5416 阅读 · 2 评论 -
时间序列模型分析
目录一个引言定义确定性时间序列分析方法概述确定性时间序列模型类型移动平均法简单移动平均法加权移动平均法趋势移动平均法指数平滑法一次指数平滑法1.预测模型编辑2.加权系数的选择编辑3.初始值的确定编辑二次指数平滑法编辑三次指数平滑法编辑指数平滑预测模型的评价一般自回归模型 AR(n)白噪声序列编辑移动平均模型 MA(m)编辑自回归移动平均模型编辑ARMA 模型的特性AR(1)系统的格林函数...转载 2022-05-13 09:56:29 · 3413 阅读 · 0 评论 -
GNN用于交通预测
文章目录GNN用于交通预测一、交通图分类二、邻接矩阵分类三、GNN分类四、挑战五、未来方向GNN用于交通预测一、交通图分类现有的交通图分为三个级别,即道路级别,区域级别和站点级别图。道路水平流量问题(道路交通流量、道路起点-终点(OD)流量和交叉口交通吞吐量),在道路交通流问题中,预测目标是在特定时间段内通过道路传感器或道路沿线特定位置的交通量。在道路OD流量问题中,目标是单个时间点上一个位置(起点)和另一个位置(终点)之间的交通量。交叉口交通吞吐量问题考虑了通过交叉口的交通量。区域层原创 2021-12-08 22:27:58 · 2912 阅读 · 0 评论 -
GCN的应用(交通预测)相关论文整理
目录T-GCN早期研究本文贡献ST-GCN本文亮点网络结构时间模块输出层ASTGCN本文亮点网络结构时空注意力GMAN本文亮点网络结构时空嵌入(STE)时空注意力模块T-GCN早期研究早期的方法只考虑了交通状况在时间上的动态变换,忽略可空间之间的相互依赖。一些研究引入了卷积神经网络来对空间特征进行提取,但普通卷积局限于处理像图像这种欧几里德结构的数据,对于交通数据这种复杂的拓扑结构效果不是很好。本文贡献本文引入了最...转载 2021-11-26 17:08:32 · 1590 阅读 · 0 评论 -
图神经网络简介及其在交通流预测中的应用
原文链接:图神经网络简介及其在交通流预测中的应用1.火爆的图神经网络究竟什么来路?最近几年,作为一项新兴的图数据学习技术,图神经网络(GNN)受到了广泛的关注。2018年年末,发生了两件特殊的事情。图数据学习领域同时发表了三篇综述论文,这种现象体现了学术界对该项技术的高度认可;更有众多工业界与学术界的大佬联名上书,支持GNN。由DeepMind、谷歌大脑、MIT 和爱丁堡大学等公司和机构的 27 位科学家共同发表了一篇论文Relational inductive biases, deep learning,转载 2021-10-30 16:35:33 · 3652 阅读 · 0 评论 -
交通大数据干货总结(1)
当前,城市交通正面临着安全、堵塞、环境污染三大难题。随着云计算、物联网、移动互联网、大数据等新兴技术的发展,城市交通进入智能化阶段。而智能化实现需要利用各种技术获取有价值的数据资源,提供决策依据。交通大数据为交通决策与服务带来了新的解决思路和方法。原创 2021-04-28 11:40:53 · 8650 阅读 · 6 评论