
机器学习
文章平均质量分 81
机器学习是一门多领域交叉学科,它聚焦于让计算机利用数据自动学习模式与规律,从而做出预测和决策。通过算法构建模型,从数据中提取信息。常见任务有分类、回归等。在图像识别、金融预测等诸多领域应用广泛,推动着各行业的智能化发展。
烂蜻蜓
00后前端程序猿,热爱技术,深耕前端,尤爱小程序与uniapp。同时探索Python编程与深度学习领域。渴望与各位技术爱好者交流心得,共同进步。期待在技术的海洋里,与您并肩航行,共赴未来! CS本科在读 | 持续成长的技术记录者
展开
-
集成学习:提升机器学习性能的强大策略
集成学习结合多模型提升性能,常见方法有Bagging、Boosting、Stacking,各有原理、优缺,通过实例展示了其在鸢尾花数据集上的应用 。原创 2025-03-04 16:01:32 · 928 阅读 · 0 评论 -
深入浅出 K 近邻算法:原理、实践与应用
K近邻算法(KNN)可分类和回归,原理是找近邻投票或平均预测,有优有缺,含实现步骤及应用示例 。原创 2025-03-04 13:16:56 · 1299 阅读 · 0 评论 -
手把手教你用Python实现支持向量机(SVM)分类——以鸢尾花数据集为例
支持向量机(SVM)通过寻找最大化分类间隔的超平面实现数据分割,核心是支持向量与核技巧处理非线性问题。Python中可用scikit-learn快速实现:加载数据、选择核函数、训练模型,并通过可视化决策边界直观展示分类效果,准确率达80%。原创 2025-03-03 20:35:12 · 1141 阅读 · 0 评论 -
机器学习算法:从基础到实践
机器学习算法分监督、无监督等,监督有线性回归等,无监督有K-means等,可依数据特征选合适算法。原创 2025-03-03 07:28:48 · 736 阅读 · 0 评论 -
决策树:机器学习中的分类与回归利器
决策树借树状结构决策,用于分类与回归。经选特征、分割等步骤构建,有优缺点,可用Python的scikit - learn库实现及可视化。原创 2025-03-01 18:39:17 · 1232 阅读 · 0 评论 -
逻辑回归:分类问题中的得力助手
逻辑回归用于分类,借Sigmoid函数输出概率,以对数损失函数为优化目标,可用梯度下降法求解,Python可便捷实现。原创 2025-03-01 11:57:30 · 620 阅读 · 0 评论 -
线性回归:机器学习基础算法全解析
线性回归是基础机器学习算法,假设变量线性相关,用MSE衡量误差,可通过最小二乘法、梯度下降法求解,能用Python实现。原创 2025-03-01 09:32:35 · 1050 阅读 · 0 评论 -
Python 入门机器学习实战:手把手教你实现鸢尾花分类
本文围绕鸢尾花分类,介绍环境准备、全流程实现,解析要点,给出代码示例,还提供学习建议助掌握机器学习方法。原创 2025-02-28 13:52:58 · 206 阅读 · 0 评论 -
人类调教AI指南:从零开始养大一个“人工智障
数据投喂→信息搓澡→模型选秀→炼丹炸炉→玄学调参→上线翻车。从电子宠物到人工智障只需6步,附赠程序员秃头套餐。快来GitHub领养你的赛博哈士奇!原创 2025-02-27 13:47:01 · 383 阅读 · 0 评论