引言
在机器学习的众多算法中,K 近邻算法(K-Nearest Neighbors,简称 KNN)以其简洁而强大的特性占据着重要地位。它既可以用于分类任务,也能在回归任务中发挥作用。无论是处理简单数据集,还是面对复杂的数据分布,KNN 都展现出独特的魅力。本文将深入探讨 KNN 算法的原理、特点、优缺点、实现步骤以及在分类和回归任务中的具体应用。
KNN 算法的基本原理
KNN 算法属于监督学习范畴,其核心思想质朴而直观。对于一个待分类样本,KNN 通过计算它与训练集中各个样本的距离,从中挑选出距离最近的 K 个样本。然后,依据这 K 个样本的类别(分类问题)或值(回归问题)来预测待分类样本的类别或值。
计算距离
距离度量是 KNN 算法的关键环节之一。常用的距离度量方法包括欧氏距离和曼哈顿距离。欧氏距离是在 n 维空间中两点之间的直线距离,其计算公式为:
\(d(x,y) = \sqrt{\sum_{i=1}^{n}(x_i - y_i)^2}\)
曼哈顿距离则是在网格状空间中两点之间的最短距离,计算方式为:
\(d(x,y) = \sum_{i=1}^{n}|x_i - y_i|\)
选择 K 个最近邻
在计算完待分类样本与所有训练样本的距离后,算法会按照距离从小到大排序,选取前 K 个样本作为最近邻。这 K 个样本将用于后续的预测决策。
投票或平均
- 分类问题:在分类场景下,K 个最近邻中出现次数最多的类别被判定为待分类样本的类别。这种方式类似于民主投票,少数服从多数。
- 回归问题:对于回归任务,K 个最近邻的值的平均值就是待分类样本的预测值。通过求平均,综合考虑了多个近邻样本的信息。
KNN 算法的特点
简单易理解
KNN 算法的原理通俗易懂,不需要复杂的数学推导和高深的理论知识。从原理描述到实际实现,整个过程清晰明了,使得初学者也能快速上手。
无需训练
KNN 属于 “懒惰学习” 算法,它在训练阶段并不对数据进行任何模型构建或参数学习。所有的计算都推迟到预测阶段,当有新的待分类样本出现时,才开始计算与训练集样本的距离等操作。
对数据分布无假设
与许多其他机器学习算法不同,KNN 不对数据的分布做任何先验假设。无论是正态分布、均匀分布,还是其他复杂的分布形式,KNN 都能适用,这大大拓宽了其应用范围。
计算复杂度高
然而,KNN 算法也存在明显的缺点,其中之一就是计算复杂度高。由于在预测时需要计算待分类样本与所有训练集样本的距离,当数据集规模较大时,计算量会呈指数级增长,